論文の概要: SoMeR: Multi-View User Representation Learning for Social Media
- arxiv url: http://arxiv.org/abs/2405.05275v1
- Date: Thu, 2 May 2024 22:26:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-12 15:40:48.812721
- Title: SoMeR: Multi-View User Representation Learning for Social Media
- Title(参考訳): SoMeR: ソーシャルメディアのためのマルチビューユーザ表現学習
- Authors: Siyi Guo, Keith Burghardt, Valeria Pantè, Kristina Lerman,
- Abstract要約: 本稿では,ソーシャルメディアのユーザ表現学習フレームワークであるSoMeRを提案する。
SoMeRは、ユーザ投稿ストリームをタイムスタンプ付きテキスト機能のシーケンスとしてエンコードし、トランスフォーマーを使用してプロファイルデータと共にそれを埋め込み、リンク予測とコントラスト学習の目標を共同でトレーニングする。
1)類似コンテンツを同時に投稿するユーザを検出することによって、協調的な影響操作に関わる不正確なアカウントを同定し、2)異なる信念を持つユーザがより遠くへ移動する様子を定量化して、主要なイベント後のオンライン議論における偏光の増大を測定する。
- 参考スコア(独自算出の注目度): 1.7949335303516192
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: User representation learning aims to capture user preferences, interests, and behaviors in low-dimensional vector representations. These representations have widespread applications in recommendation systems and advertising; however, existing methods typically rely on specific features like text content, activity patterns, or platform metadata, failing to holistically model user behavior across different modalities. To address this limitation, we propose SoMeR, a Social Media user Representation learning framework that incorporates temporal activities, text content, profile information, and network interactions to learn comprehensive user portraits. SoMeR encodes user post streams as sequences of timestamped textual features, uses transformers to embed this along with profile data, and jointly trains with link prediction and contrastive learning objectives to capture user similarity. We demonstrate SoMeR's versatility through two applications: 1) Identifying inauthentic accounts involved in coordinated influence operations by detecting users posting similar content simultaneously, and 2) Measuring increased polarization in online discussions after major events by quantifying how users with different beliefs moved farther apart in the embedding space. SoMeR's ability to holistically model users enables new solutions to important problems around disinformation, societal tensions, and online behavior understanding.
- Abstract(参考訳): ユーザ表現学習は、低次元ベクトル表現におけるユーザの好み、興味、振る舞いを捉えることを目的としている。
これらの表現はレコメンデーションシステムや広告に広く応用されているが、既存の手法はテキストコンテンツ、アクティビティパターン、プラットフォームメタデータといった特定の機能に依存しており、様々なモダリティをまたいだユーザー行動のモデル化に失敗している。
この制限に対処するため,ソーシャルメディアのユーザ表現学習フレームワークであるSoMeRを提案する。
SoMeRは、ユーザポストストリームをタイムスタンプ付きテキスト機能のシーケンスとしてエンコードし、トランスフォーマーを使用してプロファイルデータと共にそれを埋め込み、リンク予測とコントラスト学習の目標を併用して、ユーザの類似性をキャプチャする。
我々は2つのアプリケーションを通してSoMeRの汎用性を実証する。
1)類似コンテンツを同時に投稿するユーザを検出して、協調的影響操作に関わる不正アカウントを同定し、
2) 主要イベント後のオンライン議論における偏光の増大を, 異なる信念を持つユーザが, 埋め込み空間内でより遠くへ移動する様子を定量化することによって測定した。
SoMeRのユーザを全体モデリングする能力は、偽情報、社会的緊張、オンライン行動理解に関する重要な問題に対する新しいソリューションを可能にする。
関連論文リスト
- Do We Trust What They Say or What They Do? A Multimodal User Embedding Provides Personalized Explanations [35.77028281332307]
ソーシャルネットワークのためのコントリビューション対応マルチモーダルユーザ埋め込み(CAMUE)を提案する。
提案手法は,信頼できない情報の影響を自動的に軽減し,パーソナライズ可能な予測を提供する。
私たちの仕事は、より説明しやすく、信頼性があり、効果的なソーシャルメディアユーザー埋め込みの道を開く。
論文 参考訳(メタデータ) (2024-09-04T02:17:32Z) - Intent-aware Multi-source Contrastive Alignment for Tag-enhanced
Recommendation [46.04494053005958]
我々は,情報ソースをまたいだ自己教師型学習を通じて,軽量で効果的な代替フレームワークを模索する。
我々は、ユーザと以前対話したアイテムに関連する補助情報とをペアリングするために、セルフスーパービジョン信号を使用する。
また,本手法はトレーニング時間を短縮しつつ,より優れた性能を実現することができることを示す。
論文 参考訳(メタデータ) (2022-11-11T17:43:19Z) - DIGMN: Dynamic Intent Guided Meta Network for Differentiated User
Engagement Forecasting in Online Professional Social Platforms [32.70471436337077]
ユーザエンゲージメントパターンの違いの大きな理由は、ユーザが異なる意図を持っていることだ。
本稿では動的ガイドメタネットワーク(DIGMN)を提案する。
我々の手法は最先端のベースラインを大幅に上回る。
論文 参考訳(メタデータ) (2022-10-22T09:57:27Z) - The Minority Matters: A Diversity-Promoting Collaborative Metric
Learning Algorithm [154.47590401735323]
CML(Collaborative Metric Learning)は、リコメンデーションシステムにおいて人気のある手法として最近登場した。
本稿では,ユーザが複数のカテゴリの関心を持つ,困難なシナリオに焦点をあてる。
textitDiversity-Promoting Collaborative Metric Learning (DPCML) と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2022-09-30T08:02:18Z) - Knowledge-Enhanced Hierarchical Graph Transformer Network for
Multi-Behavior Recommendation [56.12499090935242]
本研究では,ユーザとレコメンデータシステムにおける項目間の多種類の対話パターンを探索する知識強化階層型グラフトランスフォーマネットワーク(KHGT)を提案する。
KHGTはグラフ構造化ニューラルネットワーク上に構築され、タイプ固有の振る舞い特性をキャプチャする。
KHGTは、様々な評価設定において、最先端のレコメンデーション手法よりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2021-10-08T09:44:00Z) - Hyper Meta-Path Contrastive Learning for Multi-Behavior Recommendation [61.114580368455236]
マルチビヘイビア情報によるユーザ購入予測は、現在のレコメンデーションシステムでは難しい問題である。
本稿では,ハイパーメタパスやハイパーメタグラフを構築するためのハイパーメタパスの概念を提案する。
最近のグラフコントラスト学習の成功により、異なる振る舞い間の依存関係を理解するために固定されたスキームを割り当てるのではなく、ユーザ行動パターンの埋め込みを適応的に学習する。
論文 参考訳(メタデータ) (2021-09-07T04:28:09Z) - Like Article, Like Audience: Enforcing Multimodal Correlations for
Disinformation Detection [20.394457328537975]
ユーザ生成コンテンツとユーザ共有コンテンツの相関を利用して、オンラインニュース記事の偽情報を検出する。
偽情報検出のためのマルチモーダル学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-08-31T14:50:16Z) - Modular Interactive Video Object Segmentation: Interaction-to-Mask,
Propagation and Difference-Aware Fusion [68.45737688496654]
本稿では,マスク間相互作用とマスク伝搬を分離するモジュール型対話型VOSフレームワークを提案する。
提案手法は,フレーム間インタラクションを少なくしつつ,現在の最先端アルゴリズムよりも優れることを示す。
論文 参考訳(メタデータ) (2021-03-14T14:39:08Z) - Multi-Interactive Attention Network for Fine-grained Feature Learning in
CTR Prediction [48.267995749975476]
クリックスルー率(ctr)予測シナリオでは、ユーザのシーケンシャルな動作を利用してユーザの関心を捉える。
既存の手法は主にユーザの行動に注意を払っているが、CTR予測には必ずしも適していない。
マルチインタラクティブ・アテンション・ネットワーク (MIAN) を提案し, 各種微細な特徴間の潜在関係を総合的に抽出する。
論文 参考訳(メタデータ) (2020-12-13T05:46:19Z) - Disentangled Graph Collaborative Filtering [100.26835145396782]
Disentangled Graph Collaborative Filtering (DGCF)は、インタラクションデータからユーザとアイテムの情報表現を学ぶための新しいモデルである。
ユーザ・イテムのインタラクション毎に意図を超越した分布をモデル化することにより、インテント・アウェアなインタラクショングラフと表現を反復的に洗練する。
DGCFはNGCF、DisenGCN、MacridVAEといった最先端モデルよりも大幅に改善されている。
論文 参考訳(メタデータ) (2020-07-03T15:37:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。