A General Albedo Recovery Approach for Aerial Photogrammetric Images through Inverse Rendering
- URL: http://arxiv.org/abs/2409.03032v1
- Date: Wed, 4 Sep 2024 18:58:32 GMT
- Title: A General Albedo Recovery Approach for Aerial Photogrammetric Images through Inverse Rendering
- Authors: Shuang Song, Rongjun Qin,
- Abstract summary: This paper presents a general image formation model for albedo recovery from typical aerial photogrammetric images under natural illuminations.
Our approach builds on the fact that both the sun illumination and scene geometry are estimable in aerial photogrammetry.
- Score: 7.874736360019618
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modeling outdoor scenes for the synthetic 3D environment requires the recovery of reflectance/albedo information from raw images, which is an ill-posed problem due to the complicated unmodeled physics in this process (e.g., indirect lighting, volume scattering, specular reflection). The problem remains unsolved in a practical context. The recovered albedo can facilitate model relighting and shading, which can further enhance the realism of rendered models and the applications of digital twins. Typically, photogrammetric 3D models simply take the source images as texture materials, which inherently embed unwanted lighting artifacts (at the time of capture) into the texture. Therefore, these polluted textures are suboptimal for a synthetic environment to enable realistic rendering. In addition, these embedded environmental lightings further bring challenges to photo-consistencies across different images that cause image-matching uncertainties. This paper presents a general image formation model for albedo recovery from typical aerial photogrammetric images under natural illuminations and derives the inverse model to resolve the albedo information through inverse rendering intrinsic image decomposition. Our approach builds on the fact that both the sun illumination and scene geometry are estimable in aerial photogrammetry, thus they can provide direct inputs for this ill-posed problem. This physics-based approach does not require additional input other than data acquired through the typical drone-based photogrammetric collection and was shown to favorably outperform existing approaches. We also demonstrate that the recovered albedo image can in turn improve typical image processing tasks in photogrammetry such as feature and dense matching, edge, and line extraction.
Related papers
- IntrinsicAnything: Learning Diffusion Priors for Inverse Rendering Under Unknown Illumination [37.96484120807323]
This paper aims to recover object materials from posed images captured under an unknown static lighting condition.
We learn the material prior with a generative model for regularizing the optimization process.
Experiments on real-world and synthetic datasets demonstrate that our approach achieves state-of-the-art performance on material recovery.
arXiv Detail & Related papers (2024-04-17T17:45:08Z) - Holistic Inverse Rendering of Complex Facade via Aerial 3D Scanning [38.72679977945778]
We use multi-view aerial images to reconstruct the geometry, lighting, and material of facades using neural signed distance fields (SDFs)
The experiment demonstrates the superior quality of our method on facade holistic inverse rendering, novel view synthesis, and scene editing compared to state-of-the-art baselines.
arXiv Detail & Related papers (2023-11-20T15:03:56Z) - Diffusion Posterior Illumination for Ambiguity-aware Inverse Rendering [63.24476194987721]
Inverse rendering, the process of inferring scene properties from images, is a challenging inverse problem.
Most existing solutions incorporate priors into the inverse-rendering pipeline to encourage plausible solutions.
We propose a novel scheme that integrates a denoising probabilistic diffusion model pre-trained on natural illumination maps into an optimization framework.
arXiv Detail & Related papers (2023-09-30T12:39:28Z) - Relightify: Relightable 3D Faces from a Single Image via Diffusion
Models [86.3927548091627]
We present the first approach to use diffusion models as a prior for highly accurate 3D facial BRDF reconstruction from a single image.
In contrast to existing methods, we directly acquire the observed texture from the input image, thus, resulting in more faithful and consistent estimation.
arXiv Detail & Related papers (2023-05-10T11:57:49Z) - Shape, Pose, and Appearance from a Single Image via Bootstrapped
Radiance Field Inversion [54.151979979158085]
We introduce a principled end-to-end reconstruction framework for natural images, where accurate ground-truth poses are not available.
We leverage an unconditional 3D-aware generator, to which we apply a hybrid inversion scheme where a model produces a first guess of the solution.
Our framework can de-render an image in as few as 10 steps, enabling its use in practical scenarios.
arXiv Detail & Related papers (2022-11-21T17:42:42Z) - Geometry-aware Single-image Full-body Human Relighting [37.381122678376805]
Single-image human relighting aims to relight a target human under new lighting conditions by decomposing the input image into albedo, shape and lighting.
Previous methods suffer from both the entanglement between albedo and lighting and the lack of hard shadows.
Our framework is able to generate photo-realistic high-frequency shadows such as cast shadows under challenging lighting conditions.
arXiv Detail & Related papers (2022-07-11T10:21:02Z) - A Novel Intrinsic Image Decomposition Method to Recover Albedo for
Aerial Images in Photogrammetry Processing [3.556015072520384]
Surface albedos from photogrammetric images can facilitate its downstream applications in VR/AR/MR and digital twins.
Standard photogrammetric pipelines are suboptimal to these applications because these textures are directly derived from images.
We propose an image formation model with respect to outdoor aerial imagery under natural illumination conditions.
We then, derived the inverse model to estimate the albedo by utilizing the typical photogrammetric products as an initial approximation of the geometry.
arXiv Detail & Related papers (2022-04-08T15:50:52Z) - DIB-R++: Learning to Predict Lighting and Material with a Hybrid
Differentiable Renderer [78.91753256634453]
We consider the challenging problem of predicting intrinsic object properties from a single image by exploiting differentiables.
In this work, we propose DIBR++, a hybrid differentiable which supports these effects by combining specularization and ray-tracing.
Compared to more advanced physics-based differentiables, DIBR++ is highly performant due to its compact and expressive model.
arXiv Detail & Related papers (2021-10-30T01:59:39Z) - Learning Indoor Inverse Rendering with 3D Spatially-Varying Lighting [149.1673041605155]
We address the problem of jointly estimating albedo, normals, depth and 3D spatially-varying lighting from a single image.
Most existing methods formulate the task as image-to-image translation, ignoring the 3D properties of the scene.
We propose a unified, learning-based inverse framework that formulates 3D spatially-varying lighting.
arXiv Detail & Related papers (2021-09-13T15:29:03Z) - Intrinsic Autoencoders for Joint Neural Rendering and Intrinsic Image
Decomposition [67.9464567157846]
We propose an autoencoder for joint generation of realistic images from synthetic 3D models while simultaneously decomposing real images into their intrinsic shape and appearance properties.
Our experiments confirm that a joint treatment of rendering and decomposition is indeed beneficial and that our approach outperforms state-of-the-art image-to-image translation baselines both qualitatively and quantitatively.
arXiv Detail & Related papers (2020-06-29T12:53:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.