論文の概要: High Energy Physics from Low Energy Physics
- arxiv url: http://arxiv.org/abs/2409.03123v1
- Date: Wed, 4 Sep 2024 23:17:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 22:44:13.275063
- Title: High Energy Physics from Low Energy Physics
- Title(参考訳): 低エネルギー物理からの高エネルギー物理
- Authors: Roland C. Farrell,
- Abstract要約: この論文は、低エネルギーと高エネルギーの物理学が関連している2つの方法を探求している。
1つ目は、低エネルギーおよび高エネルギーでの散乱過程を関連付けるUV/IR対称性である。
2つ目は、格子ゲージ理論をシミュレートするための量子コンピュータの利用である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The separation between physics at low and high energies is essential for physics to have any utility; the details of quantum gravity are not necessary to calculate the trajectory of a cannon ball. However, physics at low and high energies are not completely independent, and this thesis explores two ways that they are related. The first is through a UV/IR symmetry that relates scattering processes at low and high energies. This UV/IR symmetry manifests in geometrical properties of the $S$-matrix, and of the RG flow of the coupling constants in the corresponding effective field theory. Low energy nuclear physics nearly realizes this UV/IR symmetry, providing an explanation for the smallness of shape parameters in the effective range expansion of nucleon-nucleon scattering, and inspiring a new way to organize the interactions between neutrons and protons. The second is through the use of quantum computers to simulate lattice gauge theories. Quantum simulations rely on the universality of the rules of quantum mechanics, which can be applied equally well to describe a (low energy) transmon qubit at 15 milli-Kelvin as a (high energy) 1 TeV quark. This thesis presents the first simulations of one dimensional lattice quantum chromodynamics on a quantum computer, culminating in a real-time simulation of beta-decay. Results from the first simulations of a lattice gauge theory on 100+ qubits of a quantum computer are also presented. The methods developed in this thesis for quantum simulation are ``physics-aware", and are guided by the symmetries and hierarchies in length scales of the systems being studied. Without these physics-aware methods, 100+ qubit simulations of lattice gauge theories would not have been possible on the noisy quantum computers that are presently available.
- Abstract(参考訳): 物理学において低エネルギーと高エネルギーでの物理学の分離は有用性を持つことが不可欠であり、キャノンボールの軌跡を計算するには量子重力の詳細は必要ない。
しかし、低エネルギーと高エネルギーの物理学は完全に独立ではないため、この論文はそれらが関連する2つの方法を探究する。
1つ目は、低エネルギーおよび高エネルギーでの散乱過程を関連付けるUV/IR対称性である。
このUV/IR対称性は、$S$-行列の幾何学的性質と、対応する実場理論におけるカップリング定数のRGフローに現れる。
低エネルギー核物理学は、このUV/IR対称性をほぼ実現し、核子-核子散乱の有効範囲拡大における形状パラメータの小さいことの説明を与え、中性子と陽子の間の相互作用を組織化する新しい方法を生み出した。
2つ目は、格子ゲージ理論をシミュレートするための量子コンピュータの利用である。
量子シミュレーションは量子力学の規則の普遍性に依存しており、15ミリケルビンの(低エネルギーの)トランモン量子ビットを(高エネルギーの)1TeVクォークとして記述することができる。
この論文は、量子コンピュータ上の1次元格子量子色力学の最初のシミュレーションを示し、ベータデカイのリアルタイムシミュレーションで頂点に達した。
量子コンピュータの100以上の量子ビット上での格子ゲージ理論の最初のシミュレーションの結果も示す。
この量子シミュレーションの論文で開発された手法は '`physics-aware' であり、研究中のシステムの長さスケールにおける対称性と階層によって導かれる。
これらの物理学的手法がなければ、格子ゲージ理論の100以上の量子ビットシミュレーションは、現在利用可能なノイズの多い量子コンピュータでは不可能である。
関連論文リスト
- Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - Large-Scale $2+1$D $\mathrm{U}(1)$ Gauge Theory with Dynamical Matter in
a Cold-Atom Quantum Simulator [3.1192594881563127]
量子シミュレータ技術の主要な推進役は、高レベルの制御とチューニング性で合成量子物質のセットアップにおいて高エネルギー現象を観測することである。
本稿では、スピンレスボソンを持つ冷原子量子シミュレータにおいて、動的物質とゲージ場を持つ大規模2+1$D $mathrmU(1)$ゲージ理論を実験的に実現可能な実現法を提案する。
論文 参考訳(メタデータ) (2022-11-02T18:00:00Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
小型電子フォノン系のゲートベース量子シミュレーションにおける絶対的資源コストについて考察する。
我々は、弱い電子-フォノン結合と強い電子-フォノン結合の両方のためのIBM量子ハードウェアの実験を行う。
デバイスノイズは大きいが、近似回路再コンパイルを用いることで、正確な対角化に匹敵する電流量子コンピュータ上で電子フォノンダイナミクスを得る。
論文 参考訳(メタデータ) (2022-02-16T19:00:00Z) - Variational Adiabatic Gauge Transformation on real quantum hardware for
effective low-energy Hamiltonians and accurate diagonalization [68.8204255655161]
変分アダバティックゲージ変換(VAGT)を導入する。
VAGTは、現在の量子コンピュータを用いてユニタリ回路の変動パラメータを学習できる非摂動型ハイブリッド量子アルゴリズムである。
VAGTの精度は、RigettiおよびIonQ量子コンピュータ上でのシミュレーションと同様に、トラフ数値シミュレーションで検証される。
論文 参考訳(メタデータ) (2021-11-16T20:50:08Z) - Thermalization dynamics of a gauge theory on a quantum simulator [6.039858993863839]
ゲージ理論は近代物理学の基礎を形成する。
U(1)対称ゲージ場理論のユニタリダイナミクスの量子シミュレーションを行う。
熱アンサンブルによりよく近似された定常状態へのグローバル量子クエンチと平衡について検討する。
論文 参考訳(メタデータ) (2021-07-28T18:00:01Z) - Photon-mediated Stroboscopic Quantum Simulation of a $\mathbb{Z}_{2}$
Lattice Gauge Theory [58.720142291102135]
格子ゲージ理論(LGT)の量子シミュレーションは、非摂動粒子と凝縮物質物理学に取り組むことを目的としている。
現在の課題の1つは、量子シミュレーション装置に自然に含まれない4体(プラケット)相互作用が現れる1+1次元を超えることである。
原子物理学の最先端技術を用いて基底状態の調製とウィルソンループの測定方法を示す。
論文 参考訳(メタデータ) (2021-07-27T18:10:08Z) - SU(2) hadrons on a quantum computer [0.0]
我々は、量子コンピュータ上のゲージ場と物質場の両方を持つ非アベリアゲージ理論を実現する。
これにより、ハドロンの観測と関連する質量の計算が可能になる。
論文 参考訳(メタデータ) (2021-02-17T18:23:34Z) - Engineering analog quantum chemistry Hamiltonians using cold atoms in
optical lattices [69.50862982117127]
数値的なアナログシミュレータの動作条件をベンチマークし、要求の少ない実験装置を見出す。
また、離散化と有限サイズ効果により生じるシミュレーションの誤差についてより深く理解する。
論文 参考訳(メタデータ) (2020-11-28T11:23:06Z) - Microcavity Polaritons for Quantum simulation [18.539798191994997]
マイクロキャビティにおける偏光子を用いたいくつかの目覚しい実験を再考する。
非平衡物理学を探求するために、偏光子系の豊かさを強調した。
論文 参考訳(メタデータ) (2020-05-26T08:37:22Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
本稿では,光学格子中の低温原子に基づく離散2次元量子化学モデルのアナログシミュレータを提案する。
まず、単一フェルミオン原子を用いて、HとH$+$の離散バージョンのような単純なモデルをシミュレートする方法を分析する。
次に、一つのボゾン原子が2つのフェルミオン間の効果的なクーロン反発を媒介し、2次元の水素分子の類似性をもたらすことを示す。
論文 参考訳(メタデータ) (2020-02-21T16:00:36Z) - Quantum Simulation of Quantum Field Theory in the Light-Front
Formulation [0.0]
量子色力学(QCD)は、プロトンのようなハドロンの構造を基本的なレベルで記述する。
パルトン分布関数の不確かさは、LHCにおけるW$質量測定における誤差の主原因である。
量子場理論の光フロント定式化を用いて、これをいかに実現できるかを示す。
論文 参考訳(メタデータ) (2020-02-10T18:43:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。