Fast algorithms to improve fair information access in networks
- URL: http://arxiv.org/abs/2409.03127v1
- Date: Wed, 4 Sep 2024 23:36:39 GMT
- Title: Fast algorithms to improve fair information access in networks
- Authors: Dennis Robert Windham, Caroline J. Wendt, Alex Crane, Sorelle A. Friedler, Blair D. Sullivan, Aaron Clauset,
- Abstract summary: We develop and evaluate a set of 10 new scalable algorithms to improve information access in social networks.
We introduce a new performance metric and a new benchmark corpus of networks.
We find that while no algorithm is strictly superior to all others across networks, our new scalable algorithms are competitive with the state-of-the-art and orders of magnitude faster.
- Score: 3.837368936370829
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When information spreads across a network via pairwise sharing, large disparities in information access can arise from the network's structural heterogeneity. Algorithms to improve the fairness of information access seek to maximize the minimum access of a node to information by sequentially selecting new nodes to seed with the spreading information. However, existing algorithms are computationally expensive. Here, we develop and evaluate a set of 10 new scalable algorithms to improve information access in social networks; in order to compare them to the existing state-of-the-art, we introduce both a new performance metric and a new benchmark corpus of networks. Additionally, we investigate the degree to which algorithm performance on minimizing information access gaps can be predicted ahead of time from features of a network's structure. We find that while no algorithm is strictly superior to all others across networks, our new scalable algorithms are competitive with the state-of-the-art and orders of magnitude faster. We introduce a meta-learner approach that learns which of the fast algorithms is best for a specific network and is on average only 20% less effective than the state-of-the-art performance on held-out data, while about 75-130 times faster. Furthermore, on about 20% of networks the meta-learner's performance exceeds the state-of-the-art.
Related papers
- Less is More: Efficient Black-box Attribution via Minimal Interpretable Subset Selection [52.716143424856185]
We propose LiMA (Less input is More faithful for Attribution), which reformulates the attribution of important regions as an optimization problem for submodular subset selection.
LiMA identifies both the most and least important samples while ensuring an optimal attribution boundary that minimizes errors.
Our method also outperforms the greedy search in attribution efficiency, being 1.6 times faster.
arXiv Detail & Related papers (2025-04-01T06:58:15Z) - Learning State-Augmented Policies for Information Routing in
Communication Networks [92.59624401684083]
We develop a novel State Augmentation (SA) strategy to maximize the aggregate information at source nodes using graph neural network (GNN) architectures.
We leverage an unsupervised learning procedure to convert the output of the GNN architecture to optimal information routing strategies.
In the experiments, we perform the evaluation on real-time network topologies to validate our algorithms.
arXiv Detail & Related papers (2023-09-30T04:34:25Z) - A Fast Algorithm for Moderating Critical Nodes via Edge Removal [19.130541561303293]
We study the problem of removing $k$ edges from a network to minimize the information centrality of a target node.
We propose three approximation greedy algorithms using novel techniques such as random walk-based Schur complement approximation and fast sum estimation.
To complement our theoretical analysis, we conduct a comprehensive set of experiments on synthetic and real networks with over one million nodes.
arXiv Detail & Related papers (2023-09-09T13:54:34Z) - Cooperative Thresholded Lasso for Sparse Linear Bandit [6.52540785559241]
We present a novel approach to address the multi-agent sparse contextual linear bandit problem.
It is first algorithm that tackles row-wise distributed data in sparse linear bandits.
It is widely applicable to high-dimensional multi-agent problems where efficient feature extraction is critical for minimizing regret.
arXiv Detail & Related papers (2023-05-30T16:05:44Z) - ParlayANN: Scalable and Deterministic Parallel Graph-Based Approximate
Nearest Neighbor Search Algorithms [5.478671305092084]
We introduce ParlayANN, a library of deterministic and parallel graph-based approximate nearest neighbor search algorithms.
We develop novel parallel implementations for four state-of-the-art graph-based ANNS algorithms that scale to billion-scale datasets.
arXiv Detail & Related papers (2023-05-07T19:28:23Z) - Two Losses Are Better Than One: Faster Optimization Using a Cheaper
Proxy [6.170898159041277]
We present an algorithm for minimizing an objective with hard-to-compute gradients by using a related, easier-to-access function as a proxy.
Our algorithm guarantees convergence at a rate matching the gradient descent on a $delta$-smooth objective.
Our algorithm has many potential applications in machine learning, and provides a principled means of leveraging synthetic data, physics simulators, mixed public and private data, and more.
arXiv Detail & Related papers (2023-02-07T15:50:49Z) - Towards Better Out-of-Distribution Generalization of Neural Algorithmic
Reasoning Tasks [51.8723187709964]
We study the OOD generalization of neural algorithmic reasoning tasks.
The goal is to learn an algorithm from input-output pairs using deep neural networks.
arXiv Detail & Related papers (2022-11-01T18:33:20Z) - Communication-Efficient Adam-Type Algorithms for Distributed Data Mining [93.50424502011626]
We propose a class of novel distributed Adam-type algorithms (emphi.e., SketchedAMSGrad) utilizing sketching.
Our new algorithm achieves a fast convergence rate of $O(frac1sqrtnT + frac1(k/d)2 T)$ with the communication cost of $O(k log(d))$ at each iteration.
arXiv Detail & Related papers (2022-10-14T01:42:05Z) - Learning with Differentiable Algorithms [6.47243430672461]
This thesis explores combining classic algorithms and machine learning systems like neural networks.
The thesis formalizes the idea of algorithmic supervision, which allows a neural network to learn from or in conjunction with an algorithm.
In addition, this thesis proposes differentiable algorithms, such as differentiable sorting networks, differentiable sorting gates, and differentiable logic gate networks.
arXiv Detail & Related papers (2022-09-01T17:30:00Z) - FairGRAPE: Fairness-aware GRAdient Pruning mEthod for Face Attribute
Classification [4.909402570564468]
We propose a novel pruning method, Fairness-aware GRAdient Pruning mEthod (FairGRAPE)
Our method calculates the per-group importance of each model weight and selects a subset of weights that maintain the relative between-group total importance in pruning.
Our method is substantially more effective in a setting with a high pruning rate (99%)
arXiv Detail & Related papers (2022-07-22T05:44:03Z) - On the Effectiveness of Neural Ensembles for Image Classification with
Small Datasets [2.3478438171452014]
We focus on image classification problems with a few labeled examples per class and improve data efficiency by using an ensemble of relatively small networks.
We show that ensembling relatively shallow networks is a simple yet effective technique that is generally better than current state-of-the-art approaches for learning from small datasets.
arXiv Detail & Related papers (2021-11-29T12:34:49Z) - DAAS: Differentiable Architecture and Augmentation Policy Search [107.53318939844422]
This work considers the possible coupling between neural architectures and data augmentation and proposes an effective algorithm jointly searching for them.
Our approach achieves 97.91% accuracy on CIFAR-10 and 76.6% Top-1 accuracy on ImageNet dataset, showing the outstanding performance of our search algorithm.
arXiv Detail & Related papers (2021-09-30T17:15:17Z) - Unsupervised Domain-adaptive Hash for Networks [81.49184987430333]
Domain-adaptive hash learning has enjoyed considerable success in the computer vision community.
We develop an unsupervised domain-adaptive hash learning method for networks, dubbed UDAH.
arXiv Detail & Related papers (2021-08-20T12:09:38Z) - Learning Structures for Deep Neural Networks [99.8331363309895]
We propose to adopt the efficient coding principle, rooted in information theory and developed in computational neuroscience.
We show that sparse coding can effectively maximize the entropy of the output signals.
Our experiments on a public image classification dataset demonstrate that using the structure learned from scratch by our proposed algorithm, one can achieve a classification accuracy comparable to the best expert-designed structure.
arXiv Detail & Related papers (2021-05-27T12:27:24Z) - Firefly Neural Architecture Descent: a General Approach for Growing
Neural Networks [50.684661759340145]
Firefly neural architecture descent is a general framework for progressively and dynamically growing neural networks.
We show that firefly descent can flexibly grow networks both wider and deeper, and can be applied to learn accurate but resource-efficient neural architectures.
In particular, it learns networks that are smaller in size but have higher average accuracy than those learned by the state-of-the-art methods.
arXiv Detail & Related papers (2021-02-17T04:47:18Z) - Network Support for High-performance Distributed Machine Learning [17.919773898228716]
We propose a system model that captures both learning nodes (that perform computations) and information nodes (that provide data)
We then formulate the problem of selecting (i) which learning and information nodes should cooperate to complete the learning task, and (ii) the number of iterations to perform.
We devise an algorithm, named DoubleClimb, that can find a 1+1/|I|-competitive solution with cubic worst-case complexity.
arXiv Detail & Related papers (2021-02-05T19:38:57Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - Byzantine-Resilient Non-Convex Stochastic Gradient Descent [61.6382287971982]
adversary-resilient distributed optimization, in which.
machines can independently compute gradients, and cooperate.
Our algorithm is based on a new concentration technique, and its sample complexity.
It is very practical: it improves upon the performance of all prior methods when no.
setting machines are present.
arXiv Detail & Related papers (2020-12-28T17:19:32Z) - Progressive Skeletonization: Trimming more fat from a network at
initialization [76.11947969140608]
We propose an objective to find a skeletonized network with maximum connection sensitivity.
We then propose two approximate procedures to maximize our objective.
Our approach provides remarkably improved performance on higher pruning levels.
arXiv Detail & Related papers (2020-06-16T11:32:47Z) - Towards Deep Learning Models Resistant to Large Perturbations [0.0]
Adversarial robustness has proven to be a required property of machine learning algorithms.
We show that the well-established algorithm called "adversarial training" fails to train a deep neural network given a large, but reasonable, perturbation magnitude.
arXiv Detail & Related papers (2020-03-30T12:03:09Z) - Ranking a set of objects: a graph based least-square approach [70.7866286425868]
We consider the problem of ranking $N$ objects starting from a set of noisy pairwise comparisons provided by a crowd of equal workers.
We propose a class of non-adaptive ranking algorithms that rely on a least-squares intrinsic optimization criterion for the estimation of qualities.
arXiv Detail & Related papers (2020-02-26T16:19:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.