Towards Autonomous Cybersecurity: An Intelligent AutoML Framework for Autonomous Intrusion Detection
- URL: http://arxiv.org/abs/2409.03141v1
- Date: Thu, 5 Sep 2024 00:36:23 GMT
- Title: Towards Autonomous Cybersecurity: An Intelligent AutoML Framework for Autonomous Intrusion Detection
- Authors: Li Yang, Abdallah Shami,
- Abstract summary: This paper proposes an Automated Machine Learning (AutoML)-based autonomous IDS framework towards achieving autonomous cybersecurity for next-generation networks.
The proposed AutoML-based IDS was evaluated on two public benchmark network security datasets, CICIDS 2017 and 5G-NIDD.
This research marks a significant step towards fully autonomous cybersecurity in next-generation networks, potentially revolutionizing network security applications.
- Score: 21.003217781832923
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid evolution of mobile networks from 5G to 6G has necessitated the development of autonomous network management systems, such as Zero-Touch Networks (ZTNs). However, the increased complexity and automation of these networks have also escalated cybersecurity risks. Existing Intrusion Detection Systems (IDSs) leveraging traditional Machine Learning (ML) techniques have shown effectiveness in mitigating these risks, but they often require extensive manual effort and expert knowledge. To address these challenges, this paper proposes an Automated Machine Learning (AutoML)-based autonomous IDS framework towards achieving autonomous cybersecurity for next-generation networks. To achieve autonomous intrusion detection, the proposed AutoML framework automates all critical procedures of the data analytics pipeline, including data pre-processing, feature engineering, model selection, hyperparameter tuning, and model ensemble. Specifically, it utilizes a Tabular Variational Auto-Encoder (TVAE) method for automated data balancing, tree-based ML models for automated feature selection and base model learning, Bayesian Optimization (BO) for hyperparameter optimization, and a novel Optimized Confidence-based Stacking Ensemble (OCSE) method for automated model ensemble. The proposed AutoML-based IDS was evaluated on two public benchmark network security datasets, CICIDS2017 and 5G-NIDD, and demonstrated improved performance compared to state-of-the-art cybersecurity methods. This research marks a significant step towards fully autonomous cybersecurity in next-generation networks, potentially revolutionizing network security applications.
Related papers
- Extending Network Intrusion Detection with Enhanced Particle Swarm Optimization Techniques [0.0]
The present research investigates how to improve Network Intrusion Detection Systems (NIDS) by combining Machine Learning (ML) and Deep Learning (DL) techniques.
The study uses the CSE-CIC-IDS 2018 and LITNET-2020 datasets to compare ML methods (Decision Trees, Random Forest, XGBoost) and DL models (CNNs, RNNs, DNNs) against key performance metrics.
The Decision Tree model performed better across all measures after being fine-tuned with Enhanced Particle Swarm Optimization (EPSO), demonstrating the model's ability to detect network breaches effectively.
arXiv Detail & Related papers (2024-08-14T17:11:36Z) - Automatic AI Model Selection for Wireless Systems: Online Learning via Digital Twinning [50.332027356848094]
AI-based applications are deployed at intelligent controllers to carry out functionalities like scheduling or power control.
The mapping between context and AI model parameters is ideally done in a zero-shot fashion.
This paper introduces a general methodology for the online optimization of AMS mappings.
arXiv Detail & Related papers (2024-06-22T11:17:50Z) - AIDE: An Automatic Data Engine for Object Detection in Autonomous Driving [68.73885845181242]
We propose an Automatic Data Engine (AIDE) that automatically identifies issues, efficiently curates data, improves the model through auto-labeling, and verifies the model through generation of diverse scenarios.
We further establish a benchmark for open-world detection on AV datasets to comprehensively evaluate various learning paradigms, demonstrating our method's superior performance at a reduced cost.
arXiv Detail & Related papers (2024-03-26T04:27:56Z) - Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch [72.26822499434446]
Auto-Train-Once (ATO) is an innovative network pruning algorithm designed to automatically reduce the computational and storage costs of DNNs.
We provide a comprehensive convergence analysis as well as extensive experiments, and the results show that our approach achieves state-of-the-art performance across various model architectures.
arXiv Detail & Related papers (2024-03-21T02:33:37Z) - L-AutoDA: Leveraging Large Language Models for Automated Decision-based Adversarial Attacks [16.457528502745415]
This work introduces L-AutoDA, a novel approach leveraging the generative capabilities of Large Language Models (LLMs) to automate the design of adversarial attacks.
By iteratively interacting with LLMs in an evolutionary framework, L-AutoDA automatically designs competitive attack algorithms efficiently without much human effort.
We demonstrate the efficacy of L-AutoDA on CIFAR-10 dataset, showing significant improvements over baseline methods in both success rate and computational efficiency.
arXiv Detail & Related papers (2024-01-27T07:57:20Z) - Zero-Touch Networks: Towards Next-Generation Network Automation [21.003217781832923]
The Zero-touch network and Service Management (ZSM) framework represents an emerging paradigm in the management of the fifth-generation (5G) and Beyond (5G+) networks.
ZSM frameworks leverage advanced technologies such as Machine Learning (ML) to enable intelligent decision-making and reduce human intervention.
This paper presents a survey of Zero-Touch Networks (ZTNs) within the ZSM framework, covering network optimization, traffic monitoring, energy efficiency, and security aspects of next-generational networks.
arXiv Detail & Related papers (2023-12-07T09:21:41Z) - Enabling AI-Generated Content (AIGC) Services in Wireless Edge Networks [68.00382171900975]
In wireless edge networks, the transmission of incorrectly generated content may unnecessarily consume network resources.
We present the AIGC-as-a-service concept and discuss the challenges in deploying A at the edge networks.
We propose a deep reinforcement learning-enabled algorithm for optimal ASP selection.
arXiv Detail & Related papers (2023-01-09T09:30:23Z) - Anomaly Detection in Automatic Generation Control Systems Based on
Traffic Pattern Analysis and Deep Transfer Learning [0.38073142980733]
In modern highly interconnected power grids, automatic generation control (AGC) is crucial in maintaining the stability of the power grid.
The dependence of the AGC system on the information and communications technology (ICT) system makes it vulnerable to various types of cyber-attacks.
Information flow (IF) analysis and anomaly detection became paramount for preventing cyber attackers from driving the cyber-physical power system to instability.
arXiv Detail & Related papers (2022-09-16T17:52:42Z) - Intelligent Trajectory Design for RIS-NOMA aided Multi-robot
Communications [59.34642007625687]
The goal is to maximize the sum-rate of whole trajectories for multi-robot system by jointly optimizing trajectories and NOMA decoding orders of robots.
An integrated machine learning (ML) scheme is proposed, which combines long short-term memory (LSTM)-autoregressive integrated moving average (ARIMA) model and dueling double deep Q-network (D$3$QN) algorithm.
arXiv Detail & Related papers (2022-05-03T17:14:47Z) - AI-as-a-Service Toolkit for Human-Centered Intelligence in Autonomous
Driving [13.575818872875637]
This paper presents a proof-of-concept implementation of the AI-as-a-service toolkit developed within the H2020 TEACHING project.
It implements an autonomous driving personalization system according to the output of an automatic driver's stress recognition algorithm.
arXiv Detail & Related papers (2022-02-03T15:41:43Z) - Auto-PyTorch Tabular: Multi-Fidelity MetaLearning for Efficient and
Robust AutoDL [53.40030379661183]
Auto-PyTorch is a framework to enable fully automated deep learning (AutoDL)
It combines multi-fidelity optimization with portfolio construction for warmstarting and ensembling of deep neural networks (DNNs)
We show that Auto-PyTorch performs better than several state-of-the-art competitors on average.
arXiv Detail & Related papers (2020-06-24T15:15:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.