Extending Network Intrusion Detection with Enhanced Particle Swarm Optimization Techniques
- URL: http://arxiv.org/abs/2408.07729v1
- Date: Wed, 14 Aug 2024 17:11:36 GMT
- Title: Extending Network Intrusion Detection with Enhanced Particle Swarm Optimization Techniques
- Authors: Surasit Songma, Watcharakorn Netharn, Siriluck Lorpunmanee,
- Abstract summary: The present research investigates how to improve Network Intrusion Detection Systems (NIDS) by combining Machine Learning (ML) and Deep Learning (DL) techniques.
The study uses the CSE-CIC-IDS 2018 and LITNET-2020 datasets to compare ML methods (Decision Trees, Random Forest, XGBoost) and DL models (CNNs, RNNs, DNNs) against key performance metrics.
The Decision Tree model performed better across all measures after being fine-tuned with Enhanced Particle Swarm Optimization (EPSO), demonstrating the model's ability to detect network breaches effectively.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The present research investigates how to improve Network Intrusion Detection Systems (NIDS) by combining Machine Learning (ML) and Deep Learning (DL) techniques, addressing the growing challenge of cybersecurity threats. A thorough process for data preparation, comprising activities like cleaning, normalization, and segmentation into training and testing sets, lays the framework for model training and evaluation. The study uses the CSE-CIC-IDS 2018 and LITNET-2020 datasets to compare ML methods (Decision Trees, Random Forest, XGBoost) and DL models (CNNs, RNNs, DNNs, MLP) against key performance metrics (Accuracy, Precision, Recall, and F1-Score). The Decision Tree model performed better across all measures after being fine-tuned with Enhanced Particle Swarm Optimization (EPSO), demonstrating the model's ability to detect network breaches effectively. The findings highlight EPSO's importance in improving ML classifiers for cybersecurity, proposing a strong framework for NIDS with high precision and dependability. This extensive analysis not only contributes to the cybersecurity arena by providing a road to robust intrusion detection solutions, but it also proposes future approaches for improving ML models to combat the changing landscape of network threats.
Related papers
- Enhanced Convolution Neural Network with Optimized Pooling and Hyperparameter Tuning for Network Intrusion Detection [0.0]
We propose an Enhanced Convolutional Neural Network (EnCNN) for Network Intrusion Detection Systems (NIDS)
We compare EnCNN with various machine learning algorithms, including Logistic Regression, Decision Trees, Support Vector Machines (SVM), and ensemble methods like Random Forest, AdaBoost, and Voting Ensemble.
The results show that EnCNN significantly improves detection accuracy, with a notable 10% increase over state-of-art approaches.
arXiv Detail & Related papers (2024-09-27T11:20:20Z) - Leveraging LSTM and GAN for Modern Malware Detection [0.4799822253865054]
This paper proposes the utilization of the Deep Learning Model, LSTM networks, and GAN classifiers to amplify malware detection accuracy and speed.
The research outcomes come out with 98% accuracy that shows the efficiency of deep learning plays a decisive role in proactive cybersecurity defense.
arXiv Detail & Related papers (2024-05-07T14:57:24Z) - Deep Learning Algorithms Used in Intrusion Detection Systems -- A Review [0.0]
This review paper studies recent advancements in the application of deep learning techniques, including CNN, Recurrent Neural Networks (RNN), Deep Belief Networks (DBN), Deep Neural Networks (DNN), Long Short-Term Memory (LSTM), autoencoders (AE), Multi-Layer Perceptrons (MLP), Self-Normalizing Networks (SNN) and hybrid models, within network intrusion detection systems.
arXiv Detail & Related papers (2024-02-26T20:57:35Z) - Performance evaluation of Machine learning algorithms for Intrusion Detection System [0.40964539027092917]
This paper focuses on intrusion detection systems (IDSs) analysis using Machine Learning (ML) techniques.
We analyze the KDD CUP-'99' intrusion detection dataset used for training and validating ML models.
arXiv Detail & Related papers (2023-10-01T06:35:37Z) - Adversarial training with informed data selection [53.19381941131439]
Adrial training is the most efficient solution to defend the network against these malicious attacks.
This work proposes a data selection strategy to be applied in the mini-batch training.
The simulation results show that a good compromise can be obtained regarding robustness and standard accuracy.
arXiv Detail & Related papers (2023-01-07T12:09:50Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - Deep Q-Learning based Reinforcement Learning Approach for Network
Intrusion Detection [1.7205106391379026]
We introduce a new generation of network intrusion detection methods that combines a Q-learning-based reinforcement learning with a deep-feed forward neural network method for network intrusion detection.
Our proposed Deep Q-Learning (DQL) model provides an ongoing auto-learning capability for a network environment.
Our experimental results show that our proposed DQL is highly effective in detecting different intrusion classes and outperforms other similar machine learning approaches.
arXiv Detail & Related papers (2021-11-27T20:18:00Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - Improved Adversarial Training via Learned Optimizer [101.38877975769198]
We propose a framework to improve the robustness of adversarial training models.
By co-training's parameters model's weights, the proposed framework consistently improves robustness and steps adaptively for update directions.
arXiv Detail & Related papers (2020-04-25T20:15:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.