Non-stationary and Sparsely-correlated Multi-output Gaussian Process with Spike-and-Slab Prior
- URL: http://arxiv.org/abs/2409.03149v1
- Date: Thu, 5 Sep 2024 00:56:25 GMT
- Title: Non-stationary and Sparsely-correlated Multi-output Gaussian Process with Spike-and-Slab Prior
- Authors: Wang Xinming, Li Yongxiang, Yue Xiaowei, Wu Jianguo,
- Abstract summary: Multi-output Gaussian process (MGP) is commonly used as a transfer learning method.
This study proposes a non-stationary MGP model that can capture both the dynamic and sparse correlation among outputs.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-output Gaussian process (MGP) is commonly used as a transfer learning method to leverage information among multiple outputs. A key advantage of MGP is providing uncertainty quantification for prediction, which is highly important for subsequent decision-making tasks. However, traditional MGP may not be sufficiently flexible to handle multivariate data with dynamic characteristics, particularly when dealing with complex temporal correlations. Additionally, since some outputs may lack correlation, transferring information among them may lead to negative transfer. To address these issues, this study proposes a non-stationary MGP model that can capture both the dynamic and sparse correlation among outputs. Specifically, the covariance functions of MGP are constructed using convolutions of time-varying kernel functions. Then a dynamic spike-and-slab prior is placed on correlation parameters to automatically decide which sources are informative to the target output in the training process. An expectation-maximization (EM) algorithm is proposed for efficient model fitting. Both numerical studies and a real case demonstrate its efficacy in capturing dynamic and sparse correlation structure and mitigating negative transfer for high-dimensional time-series data. Finally, a mountain-car reinforcement learning case highlights its potential application in decision making problems.
Related papers
- Scalable Multi-Output Gaussian Processes with Stochastic Variational Inference [2.1249213103048414]
The Latent Variable MOGP (LV-MOGP) allows efficient generalization to new outputs with few data points.
complexity in LV-MOGP grows linearly with the number of outputs.
We propose a variational inference approach for the LV-MOGP that allows mini-batches for both inputs and outputs.
arXiv Detail & Related papers (2024-07-02T17:53:56Z) - Causal Feature Selection via Transfer Entropy [59.999594949050596]
Causal discovery aims to identify causal relationships between features with observational data.
We introduce a new causal feature selection approach that relies on the forward and backward feature selection procedures.
We provide theoretical guarantees on the regression and classification errors for both the exact and the finite-sample cases.
arXiv Detail & Related papers (2023-10-17T08:04:45Z) - Heterogeneous Multi-Task Gaussian Cox Processes [61.67344039414193]
We present a novel extension of multi-task Gaussian Cox processes for modeling heterogeneous correlated tasks jointly.
A MOGP prior over the parameters of the dedicated likelihoods for classification, regression and point process tasks can facilitate sharing of information between heterogeneous tasks.
We derive a mean-field approximation to realize closed-form iterative updates for estimating model parameters.
arXiv Detail & Related papers (2023-08-29T15:01:01Z) - Automatic Data Augmentation via Invariance-Constrained Learning [94.27081585149836]
Underlying data structures are often exploited to improve the solution of learning tasks.
Data augmentation induces these symmetries during training by applying multiple transformations to the input data.
This work tackles these issues by automatically adapting the data augmentation while solving the learning task.
arXiv Detail & Related papers (2022-09-29T18:11:01Z) - Adaptive Discrete Communication Bottlenecks with Dynamic Vector
Quantization [76.68866368409216]
We propose learning to dynamically select discretization tightness conditioned on inputs.
We show that dynamically varying tightness in communication bottlenecks can improve model performance on visual reasoning and reinforcement learning tasks.
arXiv Detail & Related papers (2022-02-02T23:54:26Z) - Scalable Gaussian Processes for Data-Driven Design using Big Data with
Categorical Factors [14.337297795182181]
Gaussian processes (GP) have difficulties in accommodating big datasets, categorical inputs, and multiple responses.
We propose a GP model that utilizes latent variables and functions obtained through variational inference to address the aforementioned challenges simultaneously.
Our approach is demonstrated for machine learning of ternary oxide materials and topology optimization of a multiscale compliant mechanism.
arXiv Detail & Related papers (2021-06-26T02:17:23Z) - Bayesian Inference in High-Dimensional Time-Serieswith the Orthogonal
Stochastic Linear Mixing Model [2.7909426811685893]
Many modern time-series datasets contain large numbers of output response variables sampled for prolonged periods of time.
In this paper, we propose a new Markov chain Monte Carlo framework for the analysis of diverse, large-scale time-series datasets.
arXiv Detail & Related papers (2021-06-25T01:12:54Z) - Collaborative Nonstationary Multivariate Gaussian Process Model [2.362467745272567]
We propose a novel model called the collaborative nonstationary Gaussian process model(CNMGP)
CNMGP allows us to model data in which outputs do not share a common input set, with a computational complexity independent of the size of the inputs and outputs.
We show that our model generally pro-vides better predictive performance than the state-of-the-art, and also provides estimates of time-varying correlations that differ across outputs.
arXiv Detail & Related papers (2021-06-01T18:25:22Z) - Transformer Hawkes Process [79.16290557505211]
We propose a Transformer Hawkes Process (THP) model, which leverages the self-attention mechanism to capture long-term dependencies.
THP outperforms existing models in terms of both likelihood and event prediction accuracy by a notable margin.
We provide a concrete example, where THP achieves improved prediction performance for learning multiple point processes when incorporating their relational information.
arXiv Detail & Related papers (2020-02-21T13:48:13Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
We propose a higher-order LSTM model that can efficiently learn long-term correlations in the video sequence.
This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time.
Our results achieve state-of-the-art performance-art in a wide range of applications and datasets.
arXiv Detail & Related papers (2020-02-21T05:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.