A note on the differential spectrum of the Ness-Helleseth function
- URL: http://arxiv.org/abs/2409.03189v1
- Date: Thu, 5 Sep 2024 02:28:17 GMT
- Title: A note on the differential spectrum of the Ness-Helleseth function
- Authors: Ketong Ren, Maosheng Xiong, Haode Yan,
- Abstract summary: We study differential equations arising from the Ness-Helleseth function $f_u$ more carefully.
We express the differential spectrum of $f_u$ for such $u$ in terms of two quadratic character sums.
- Score: 9.776869981132844
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Let $n\geqslant3$ be an odd integer and $u$ an element in the finite field $\gf_{3^n}$. The Ness-Helleseth function is the binomial $f_u(x)=ux^{d_1}+x^{d_2}$ over $\gf_{3^n}$, where $d_1=\frac{3^n-1}{2}-1$ and $d_2=3^n-2$. In 2007, Ness and Helleseth showed that $f_u$ is an APN function when $\chi(u+1)=\chi(u-1)=\chi(u)$, is differentially $3$-uniform when $\chi(u+1)=\chi(u-1)\neq\chi(u)$, and has differential uniformity at most 4 if $ \chi(u+1)\neq\chi(u-1)$ and $u\notin\gf_3$. Here $\chi(\cdot)$ denotes the quadratic character on $\gf_{3^n}$. Recently, Xia et al. determined the differential uniformity of $f_u$ for all $u$ and computed the differential spectrum of $f_u$ for $u$ satisfying $\chi(u+1)=\chi(u-1)$ or $u\in\gf_3$. The remaining problem is the differential spectrum of $f_u$ with $\chi(u+1)\neq\chi(u-1)$ and $u\notin\gf_3$. In this paper, we fill in the gap. By studying differential equations arising from the Ness-Helleseth function $f_u$ more carefully, we express the differential spectrum of $f_u$ for such $u$ in terms of two quadratic character sums. This complements the previous work of Xia et al.
Related papers
- PREM: Privately Answering Statistical Queries with Relative Error [91.98332694700046]
We introduce $mathsfPREM$ (Private Relative Error Multiplicative weight update), a new framework for generating synthetic data that a relative error guarantee for statistical queries under $(varepsilon, delta)$ differential privacy (DP)
We complement our algorithm with nearly matching lower bounds.
arXiv Detail & Related papers (2025-02-20T18:32:02Z) - A note on the differential spectrum of a class of locally APN functions [1.8109081066789852]
We first give some properties of the differential spectrum of any cryptographic function.
By solving some systems of equations over finite fields, we express the differential spectrum of $f_pm1$ in terms of the quadratic character sums.
arXiv Detail & Related papers (2025-01-08T02:17:06Z) - LevAttention: Time, Space, and Streaming Efficient Algorithm for Heavy Attentions [54.54897832889028]
We show that for any $K$, there is a universal set" $U subset [n]$ of size independent of $n$, such that for any $Q$ and any row $i$, the large attention scores $A_i,j$ in row $i$ of $A$ all have $jin U$.
We empirically show the benefits of our scheme for vision transformers, showing how to train new models that use our universal set while training as well.
arXiv Detail & Related papers (2024-10-07T19:47:13Z) - Further Investigation on Differential Properties of the Generalized Ness-Helleseth Function [13.67029767623542]
The function defined by $f_u(x)=uxd_1+xd_2$ is called the generalized Ness-Helleseth function over $mathbbF_pn$.
For each $u$ satisfying $chi(u+1) = chi(u-1)$, the differential spectrum of $f_u(x)$ is investigated.
arXiv Detail & Related papers (2024-08-30T13:18:23Z) - The SUSY partners of the QES sextic potential revisited [0.0]
We study the SUSY partner Hamiltonians of the quasi- solvable (QES) sextic potential $Vrm qes(x) = nu, x6 + 2, nu, mu,x4 + left[mu2-(4N+3)nu right], x2$, $N in mathbbZ+$.
arXiv Detail & Related papers (2023-11-10T18:38:02Z) - Rationality of Four-Valued Families of Weil Sums of Binomials [6.752538702870792]
Weil sums of binomials of the form $WK,s_u=sum_x in K psi(xs - u x)$ are investigated.
We show that if the Weil spectrum contains precisely four distinct values, then they must all be rational integers.
arXiv Detail & Related papers (2023-06-26T04:32:48Z) - The Approximate Degree of DNF and CNF Formulas [95.94432031144716]
For every $delta>0,$ we construct CNF and formulas of size with approximate degree $Omega(n1-delta),$ essentially matching the trivial upper bound of $n.
We show that for every $delta>0$, these models require $Omega(n1-delta)$, $Omega(n/4kk2)1-delta$, and $Omega(n/4kk2)1-delta$, respectively.
arXiv Detail & Related papers (2022-09-04T10:01:39Z) - Low-Rank Approximation with $1/\epsilon^{1/3}$ Matrix-Vector Products [58.05771390012827]
We study iterative methods based on Krylov subspaces for low-rank approximation under any Schatten-$p$ norm.
Our main result is an algorithm that uses only $tildeO(k/sqrtepsilon)$ matrix-vector products.
arXiv Detail & Related papers (2022-02-10T16:10:41Z) - Learning low-degree functions from a logarithmic number of random
queries [77.34726150561087]
We prove that for any integer $ninmathbbN$, $din1,ldots,n$ and any $varepsilon,deltain(0,1)$, a bounded function $f:-1,1nto[-1,1]$ of degree at most $d$ can be learned.
arXiv Detail & Related papers (2021-09-21T13:19:04Z) - On Avoiding the Union Bound When Answering Multiple Differentially
Private Queries [49.453751858361265]
We give an algorithm for this task that achieves an expected $ell_infty$ error bound of $O(frac1epsilonsqrtk log frac1delta)$.
On the other hand, the algorithm of Dagan and Kur has a remarkable advantage that the $ell_infty$ error bound of $O(frac1epsilonsqrtk log frac1delta)$ holds not only in expectation but always.
arXiv Detail & Related papers (2020-12-16T17:58:45Z) - Learning and Testing Variable Partitions [13.575794982844222]
We show that $mathcalO(k n2)(delta + epsilon)$ can be learned in time $tildemathcalO(n2 mathrmpoly (1/epsilon)$ for any $epsilon > 0$.
We also show that even two-sided testers require $Omega(n)$ queries when $k = 2$.
arXiv Detail & Related papers (2020-03-29T10:12:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.