論文の概要: Application Research On Real-Time Perception Of Device Performance Status
- arxiv url: http://arxiv.org/abs/2409.03218v1
- Date: Thu, 5 Sep 2024 03:32:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 21:57:04.972631
- Title: Application Research On Real-Time Perception Of Device Performance Status
- Title(参考訳): デバイス性能のリアルタイム認識に関するアプリケーション研究
- Authors: Zhe Wang, Zhen Wang, Jianwen Wu, Wangzhong Xiao, Yidong Chen, Zihua Feng, Dian Yang, Hongchen Liu, Bo Liang, Jiaojiao Fu,
- Abstract要約: デバイスの性能をリアルタイムに記述するための性能特徴とプロファイルについて検討した。
デバイスの性能状態の同定と予測の精度を,プロファイル特性の性能と比較した。
- 参考スコア(独自算出の注目度): 9.145804504353125
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In order to accurately identify the performance status of mobile devices and finely adjust the user experience, a real-time performance perception evaluation method based on TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) combined with entropy weighting method and time series model construction was studied. After collecting the performance characteristics of various mobile devices, the device performance profile was fitted by using PCA (principal component analysis) dimensionality reduction and feature engineering methods such as descriptive time series analysis. The ability of performance features and profiles to describe the real-time performance status of devices was understood and studied by applying the TOPSIS method and multi-level weighting processing. A time series model was constructed for the feature set under objective weighting, and multiple sensitivity (real-time, short-term, long-term) performance status perception results were provided to obtain real-time performance evaluation data and long-term stable performance prediction data. Finally, by configuring dynamic AB experiments and overlaying fine-grained power reduction strategies, the usability of the method was verified, and the accuracy of device performance status identification and prediction was compared with the performance of the profile features including dimensionality reduction time series modeling, TOPSIS method and entropy weighting method, subjective weighting, HMA method. The results show that accurate real-time performance perception results can greatly enhance business value, and this research has application effectiveness and certain forward-looking significance.
- Abstract(参考訳): モバイルデバイスの性能状況を正確に把握し,ユーザエクスペリエンスを微調整するために,エントロピー重み付けと時系列モデル構築を組み合わせたTOPSISに基づくリアルタイム性能評価手法を検討した。
各種モバイルデバイスの性能特性を収集した後,PCA(主成分分析)次元削減と記述時系列解析などの特徴工学的手法を用いて,デバイスの性能プロファイルを適用した。
ToPSIS法とマルチレベル重み付け処理を適用して,デバイスの性能特性とプロファイルをリアルタイムに記述する能力について検討した。
目標重み付けで設定した特徴に対して時系列モデルを構築し,実時間性能評価データと長期安定性能予測データを得るために,複数感度(リアルタイム,短期,長期)の性能評価結果を提案した。
最後に、動的AB実験の設定と微粒化電力削減戦略のオーバーレイにより、本手法のユーザビリティを検証し、ディメンタリティ低減時間時系列モデリング、TOPSIS法、エントロピー重み付け法、主観重み付け法、HMA法などのプロファイル特性と比較した。
その結果,正確な実時間性能認識結果がビジネス価値を大幅に向上させる可能性が示唆された。
関連論文リスト
- Tracing Optimization for Performance Modeling and Regression Detection [15.99435412859094]
性能モデルは、システムのパフォーマンスと実行時のアクティビティの関係を解析的に記述する。
性能に敏感なコード領域を識別・排除することで、トレーシングオーバーヘッドを低減する統計的手法を提案する。
私たちのアプローチは完全に自動化されており、最小限の人的労力で本番環境で使用できるようにしています。
論文 参考訳(メタデータ) (2024-11-26T16:11:55Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
そこで本研究では,機能シフトによるブラックボックスモデルの振る舞いを説明する新しい手法を提案する。
本稿では,最適輸送と共有値の概念を組み合わせた提案手法について,説明的性能推定として紹介する。
論文 参考訳(メタデータ) (2024-08-24T18:28:19Z) - TSI-Bench: Benchmarking Time Series Imputation [52.27004336123575]
TSI-Benchは、ディープラーニング技術を利用した時系列計算のための総合ベンチマークスイートである。
TSI-Benchパイプラインは、実験的な設定を標準化し、計算アルゴリズムの公平な評価を可能にする。
TSI-Benchは、計算目的のために時系列予測アルゴリズムを調整するための体系的なパラダイムを革新的に提供する。
論文 参考訳(メタデータ) (2024-06-18T16:07:33Z) - VIRL: Volume-Informed Representation Learning towards Few-shot Manufacturability Estimation [0.0]
本研究は,3次元幾何エンコーダの事前学習のためのボリュームインフォームド表現学習手法であるVIRLを紹介する。
VIRLによって事前訓練されたモデルでは,データ制限による一般化性の向上が大幅に向上した。
論文 参考訳(メタデータ) (2024-06-18T05:30:26Z) - DETAIL: Task DEmonsTration Attribution for Interpretable In-context Learning [75.68193159293425]
インコンテキスト学習(ICL)により、トランスフォーマーベースの言語モデルでは、パラメータを更新することなく、いくつかの"タスクデモ"で特定のタスクを学習することができる。
ICLの特徴に対処する影響関数に基づく帰属手法DETAILを提案する。
ホワイトボックスモデルで得られた属性スコアがブラックボックスモデルに転送可能であることを示すことにより、モデル性能を向上させる上で、DETAILの広範な適用性を実験的に証明する。
論文 参考訳(メタデータ) (2024-05-22T15:52:52Z) - Robustness and Generalization Performance of Deep Learning Models on
Cyber-Physical Systems: A Comparative Study [71.84852429039881]
調査は、センサーの故障やノイズなど、様々な摂動を扱うモデルの能力に焦点を当てている。
我々は,これらのモデルの一般化と伝達学習能力を,アウト・オブ・ディストリビューション(OOD)サンプルに公開することによって検証する。
論文 参考訳(メタデータ) (2023-06-13T12:43:59Z) - CVTT: Cross-Validation Through Time [0.0]
我々は、メソッドの連続的なパフォーマンスをなくすことで、ジョイントデータ-メソッド効果に関する貴重な洞察を失う可能性があると論じる。
提案手法を用いて、一般的なRecSysアルゴリズムの性能を様々なメトリクスやデータセットに対して詳細に分析する。
以上の結果から,モデルの性能は時間とともに著しく変化し,データと評価設定の両方が顕著な影響を及ぼす可能性が示唆された。
論文 参考訳(メタデータ) (2022-05-11T10:30:38Z) - Information-Theoretic Odometry Learning [83.36195426897768]
生体計測推定を目的とした学習動機付け手法のための統合情報理論フレームワークを提案する。
提案フレームワークは情報理論言語の性能評価と理解のためのエレガントなツールを提供する。
論文 参考訳(メタデータ) (2022-03-11T02:37:35Z) - Temporal Dependencies in Feature Importance for Time Series Predictions [4.082348823209183]
時系列予測設定における特徴重要度を評価するためのフレームワークであるWinITを提案する。
我々は、ソリューションが時間ステップ内の機能の適切な属性をどのように改善するかを示す。
WinIT は FIT の2.47倍の性能を達成しており、実際のMIMIC の致命的課題における他の特徴的重要な手法である。
論文 参考訳(メタデータ) (2021-07-29T20:31:03Z) - Analytics of Longitudinal System Monitoring Data for Performance Prediction [0.7004662712880577]
スケジューラキューで待機しているジョブのパフォーマンスを予測できるデータ駆動モデルを作成します。
我々はこれらの予測モデルを詳細に分析し、主要な性能予測因子である特徴を特定する。
このようなモデルがアプリケーションに依存しないことを実証し、トレーニングに含まれていないアプリケーションのパフォーマンスを予測するために使用できることを示す。
論文 参考訳(メタデータ) (2020-07-07T13:57:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。