Can LLMs be Good Graph Judger for Knowledge Graph Construction?
- URL: http://arxiv.org/abs/2411.17388v1
- Date: Tue, 26 Nov 2024 12:46:57 GMT
- Title: Can LLMs be Good Graph Judger for Knowledge Graph Construction?
- Authors: Haoyu Huang, Chong Chen, Conghui He, Yang Li, Jiawei Jiang, Wentao Zhang,
- Abstract summary: In this paper, we propose GraphJudger, a knowledge graph construction framework to address the aforementioned challenges.
We introduce three innovative modules in our method, which are entity-centric iterative text denoising, knowledge aware instruction tuning and graph judgement.
Experiments conducted on two general text-graph pair datasets and one domain-specific text-graph pair dataset show superior performances compared to baseline methods.
- Score: 33.958327252291
- License:
- Abstract: In real-world scenarios, most of the data obtained from information retrieval (IR) system is unstructured. Converting natural language sentences into structured Knowledge Graphs (KGs) remains a critical challenge. The quality of constructed KGs may also impact the performance of some KG-dependent domains like GraphRAG systems and recommendation systems. Recently, Large Language Models (LLMs) have demonstrated impressive capabilities in addressing a wide range of natural language processing tasks. However, there are still challenges when utilizing LLMs to address the task of generating structured KGs. And we have identified three limitations with respect to existing KG construction methods. (1)There is a large amount of information and excessive noise in real-world documents, which could result in extracting messy information. (2)Native LLMs struggle to effectively extract accuracy knowledge from some domain-specific documents. (3)Hallucinations phenomenon cannot be overlooked when utilizing LLMs directly as an unsupervised method for constructing KGs. In this paper, we propose GraphJudger, a knowledge graph construction framework to address the aforementioned challenges. We introduce three innovative modules in our method, which are entity-centric iterative text denoising, knowledge aware instruction tuning and graph judgement, respectively. We seek to utilize the capacity of LLMs to function as a graph judger, a capability superior to their role only as a predictor for KG construction problems. Experiments conducted on two general text-graph pair datasets and one domain-specific text-graph pair dataset show superior performances compared to baseline methods. The code of our proposed method is available at https://github.com/hhy-huang/GraphJudger.
Related papers
- Comprehending Knowledge Graphs with Large Language Models for Recommender Systems [13.270018897057293]
We propose a novel method called CoLaKG, which leverages large language models for knowledge-aware recommendation.
We first extract subgraphs centered on each item from the KG and convert them into textual inputs for the LLM.
The LLM then outputs its comprehension of these item-centered subgraphs, which are subsequently transformed into semantic embeddings.
arXiv Detail & Related papers (2024-10-16T04:44:34Z) - iText2KG: Incremental Knowledge Graphs Construction Using Large Language Models [0.7165255458140439]
iText2KG is a method for incremental, topic-independent Knowledge Graph construction without post-processing.
Our method demonstrates superior performance compared to baseline methods across three scenarios.
arXiv Detail & Related papers (2024-09-05T06:49:14Z) - Knowledge Graph-Enhanced Large Language Models via Path Selection [58.228392005755026]
Large Language Models (LLMs) have shown unprecedented performance in various real-world applications.
LLMs are known to generate factually inaccurate outputs, a.k.a. the hallucination problem.
We propose a principled framework KELP with three stages to handle the above problems.
arXiv Detail & Related papers (2024-06-19T21:45:20Z) - Generate-on-Graph: Treat LLM as both Agent and KG in Incomplete Knowledge Graph Question Answering [87.67177556994525]
We propose a training-free method called Generate-on-Graph (GoG) to generate new factual triples while exploring Knowledge Graphs (KGs)
GoG performs reasoning through a Thinking-Searching-Generating framework, which treats LLM as both Agent and KG in IKGQA.
arXiv Detail & Related papers (2024-04-23T04:47:22Z) - Can LLMs Effectively Leverage Graph Structural Information through Prompts, and Why? [18.328637750057037]
Large language models (LLMs) are gaining increasing attention for their capability to process graphs with rich text attributes.
We aim to understand why the incorporation of structural information inherent in graph data can improve the prediction performance of LLMs.
arXiv Detail & Related papers (2023-09-28T16:58:37Z) - Using Large Language Models for Zero-Shot Natural Language Generation
from Knowledge Graphs [4.56877715768796]
We show that ChatGPT achieves near state-of-the-art performance on some measures of the WebNLG 2020 challenge.
We also show that there is a significant connection between what the LLM already knows about the data it is parsing and the quality of the output text.
arXiv Detail & Related papers (2023-07-14T12:45:03Z) - Exploring the Potential of Large Language Models (LLMs) in Learning on
Graphs [59.74814230246034]
Large Language Models (LLMs) have been proven to possess extensive common knowledge and powerful semantic comprehension abilities.
We investigate two possible pipelines: LLMs-as-Enhancers and LLMs-as-Predictors.
arXiv Detail & Related papers (2023-07-07T05:31:31Z) - Harnessing Explanations: LLM-to-LM Interpreter for Enhanced
Text-Attributed Graph Representation Learning [51.90524745663737]
A key innovation is our use of explanations as features, which can be used to boost GNN performance on downstream tasks.
Our method achieves state-of-the-art results on well-established TAG datasets.
Our method significantly speeds up training, achieving a 2.88 times improvement over the closest baseline on ogbn-arxiv.
arXiv Detail & Related papers (2023-05-31T03:18:03Z) - Deep Bidirectional Language-Knowledge Graph Pretraining [159.9645181522436]
DRAGON is a self-supervised approach to pretraining a deeply joint language-knowledge foundation model from text and KG at scale.
Our model takes pairs of text segments and relevant KG subgraphs as input and bidirectionally fuses information from both modalities.
arXiv Detail & Related papers (2022-10-17T18:02:52Z) - ENT-DESC: Entity Description Generation by Exploring Knowledge Graph [53.03778194567752]
In practice, the input knowledge could be more than enough, since the output description may only cover the most significant knowledge.
We introduce a large-scale and challenging dataset to facilitate the study of such a practical scenario in KG-to-text.
We propose a multi-graph structure that is able to represent the original graph information more comprehensively.
arXiv Detail & Related papers (2020-04-30T14:16:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.