N-gram Prediction and Word Difference Representations for Language Modeling
- URL: http://arxiv.org/abs/2409.03295v1
- Date: Thu, 5 Sep 2024 07:03:23 GMT
- Title: N-gram Prediction and Word Difference Representations for Language Modeling
- Authors: DongNyeong Heo, Daniela Noemi Rim, Heeyoul Choi,
- Abstract summary: We introduce a simple N-gram prediction framework for the Causal Language Model (CLM) task.
We also introduce word difference representation (WDR) as a surrogate and contextualized target representation during model training.
To further enhance the quality of next word prediction, we propose an ensemble method that incorporates the future N words' prediction results.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Causal language modeling (CLM) serves as the foundational framework underpinning remarkable successes of recent large language models (LLMs). Despite its success, the training approach for next word prediction poses a potential risk of causing the model to overly focus on local dependencies within a sentence. While prior studies have been introduced to predict future N words simultaneously, they were primarily applied to tasks such as masked language modeling (MLM) and neural machine translation (NMT). In this study, we introduce a simple N-gram prediction framework for the CLM task. Moreover, we introduce word difference representation (WDR) as a surrogate and contextualized target representation during model training on the basis of N-gram prediction framework. To further enhance the quality of next word prediction, we propose an ensemble method that incorporates the future N words' prediction results. Empirical evaluations across multiple benchmark datasets encompassing CLM and NMT tasks demonstrate the significant advantages of our proposed methods over the conventional CLM.
Related papers
- A Large-Scale Evaluation of Speech Foundation Models [110.95827399522204]
We establish the Speech processing Universal PERformance Benchmark (SUPERB) to study the effectiveness of the foundation model paradigm for speech.
We propose a unified multi-tasking framework to address speech processing tasks in SUPERB using a frozen foundation model followed by task-specialized, lightweight prediction heads.
arXiv Detail & Related papers (2024-04-15T00:03:16Z) - Benchmarking Sequential Visual Input Reasoning and Prediction in
Multimodal Large Language Models [21.438427686724932]
We introduce a novel benchmark that assesses the predictive reasoning capabilities of MLLMs across diverse scenarios.
Our benchmark targets three important domains: abstract pattern reasoning, human activity prediction, and physical interaction prediction.
Empirical experiments confirm the soundness of the proposed benchmark and evaluation methods.
arXiv Detail & Related papers (2023-10-20T13:14:38Z) - Evaluating and Explaining Large Language Models for Code Using Syntactic
Structures [74.93762031957883]
This paper introduces ASTxplainer, an explainability method specific to Large Language Models for code.
At its core, ASTxplainer provides an automated method for aligning token predictions with AST nodes.
We perform an empirical evaluation on 12 popular LLMs for code using a curated dataset of the most popular GitHub projects.
arXiv Detail & Related papers (2023-08-07T18:50:57Z) - Constructing Word-Context-Coupled Space Aligned with Associative
Knowledge Relations for Interpretable Language Modeling [0.0]
The black-box structure of the deep neural network in pre-trained language models seriously limits the interpretability of the language modeling process.
A Word-Context-Coupled Space (W2CSpace) is proposed by introducing the alignment processing between uninterpretable neural representation and interpretable statistical logic.
Our language model can achieve better performance and highly credible interpretable ability compared to related state-of-the-art methods.
arXiv Detail & Related papers (2023-05-19T09:26:02Z) - An Overview on Language Models: Recent Developments and Outlook [32.528770408502396]
Conventional language models (CLMs) aim to predict the probability of linguistic sequences in a causal manner.
Pre-trained language models (PLMs) cover broader concepts and can be used in both causal sequential modeling and fine-tuning for downstream applications.
arXiv Detail & Related papers (2023-03-10T07:55:00Z) - Few-shot Subgoal Planning with Language Models [58.11102061150875]
We show that language priors encoded in pre-trained language models allow us to infer fine-grained subgoal sequences.
In contrast to recent methods which make strong assumptions about subgoal supervision, our experiments show that language models can infer detailed subgoal sequences without any fine-tuning.
arXiv Detail & Related papers (2022-05-28T01:03:30Z) - Better Language Model with Hypernym Class Prediction [101.8517004687825]
Class-based language models (LMs) have been long devised to address context sparsity in $n$-gram LMs.
In this study, we revisit this approach in the context of neural LMs.
arXiv Detail & Related papers (2022-03-21T01:16:44Z) - Masked Language Modeling and the Distributional Hypothesis: Order Word
Matters Pre-training for Little [74.49773960145681]
A possible explanation for the impressive performance of masked language model (MLM)-training is that such models have learned to represent the syntactic structures prevalent in NLP pipelines.
In this paper, we propose a different explanation: pre-trains succeed on downstream tasks almost entirely due to their ability to model higher-order word co-occurrence statistics.
Our results show that purely distributional information largely explains the success of pre-training, and underscore the importance of curating challenging evaluation datasets that require deeper linguistic knowledge.
arXiv Detail & Related papers (2021-04-14T06:30:36Z) - Explaining and Improving Model Behavior with k Nearest Neighbor
Representations [107.24850861390196]
We propose using k nearest neighbor representations to identify training examples responsible for a model's predictions.
We show that kNN representations are effective at uncovering learned spurious associations.
Our results indicate that the kNN approach makes the finetuned model more robust to adversarial inputs.
arXiv Detail & Related papers (2020-10-18T16:55:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.