論文の概要: Con-ReCall: Detecting Pre-training Data in LLMs via Contrastive Decoding
- arxiv url: http://arxiv.org/abs/2409.03363v1
- Date: Thu, 5 Sep 2024 09:10:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 21:10:19.051955
- Title: Con-ReCall: Detecting Pre-training Data in LLMs via Contrastive Decoding
- Title(参考訳): Con-ReCall:コントラストデコーディングによるLCMの事前学習データ検出
- Authors: Cheng Wang, Yiwei Wang, Bryan Hooi, Yujun Cai, Nanyun Peng, Kai-Wei Chang,
- Abstract要約: 既存のメソッドは通常、ターゲットテキストを分離して分析するか、非メンバーコンテキストでのみ分析する。
Con-ReCallは、メンバと非メンバのコンテキストによって誘導される非対称な分布シフトを利用する新しいアプローチである。
- 参考スコア(独自算出の注目度): 118.75567341513897
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The training data in large language models is key to their success, but it also presents privacy and security risks, as it may contain sensitive information. Detecting pre-training data is crucial for mitigating these concerns. Existing methods typically analyze target text in isolation or solely with non-member contexts, overlooking potential insights from simultaneously considering both member and non-member contexts. While previous work suggested that member contexts provide little information due to the minor distributional shift they induce, our analysis reveals that these subtle shifts can be effectively leveraged when contrasted with non-member contexts. In this paper, we propose Con-ReCall, a novel approach that leverages the asymmetric distributional shifts induced by member and non-member contexts through contrastive decoding, amplifying subtle differences to enhance membership inference. Extensive empirical evaluations demonstrate that Con-ReCall achieves state-of-the-art performance on the WikiMIA benchmark and is robust against various text manipulation techniques.
- Abstract(参考訳): 大きな言語モデルのトレーニングデータは、その成功の鍵であるが、機密情報を含む可能性があるため、プライバシとセキュリティのリスクも提示する。
これらの懸念を緩和するためには、事前トレーニングデータの検出が不可欠だ。
既存の手法は、通常、対象のテキストを単独で分析するか、あるいは非メンバーコンテキストのみで分析し、メンバーコンテキストと非メンバーコンテキストの両方を同時に考慮することで潜在的な洞察を見越す。
以前の研究では、メンバーコンテキストは、それらが引き起こす小さな分布シフトのため、ほとんど情報を提供していないことを示唆していたが、我々の分析は、これらの微妙なシフトが、非メンバーコンテキストと対比した場合、効果的に活用できることを明らかにした。
本稿では,コントラストデコーディングによる非対称な分布変化を利用した新しい手法であるCon-ReCallを提案する。
Con-ReCallはWikiMIAベンチマークで最先端のパフォーマンスを実現しており、様々なテキスト操作技術に対して堅牢である。
関連論文リスト
- On the loss of context-awareness in general instruction fine-tuning [101.03941308894191]
命令応答対における教師付き微調整(SFT)のようなポストトレーニング手法は、事前トレーニング中に学習した既存の能力を損なう可能性がある。
そこで本研究では,ユーザプロンプトに配慮したポストホックアテンション・ステアリングと,コンテキスト依存度指標を用いた条件付きインストラクションの微調整という,インストラクションモデルにおけるコンテキスト認識の損失を軽減する2つの方法を提案する。
論文 参考訳(メタデータ) (2024-11-05T00:16:01Z) - Annotator in the Loop: A Case Study of In-Depth Rater Engagement to Create a Bridging Benchmark Dataset [1.825224193230824]
本稿では,アノテーションのための新規かつ協調的かつ反復的なアノテーション手法について述べる。
以上の結果から,アノテータとの連携によりアノテーションの手法が強化されることが示唆された。
論文 参考訳(メタデータ) (2024-08-01T19:11:08Z) - ReCaLL: Membership Inference via Relative Conditional Log-Likelihoods [56.073335779595475]
ReCaLL (Relative Conditional Log-Likelihood) という新しいメンバーシップ推論攻撃(MIA)を提案する。
ReCaLLは、ターゲットデータポイントを非メンバーコンテキストでプレフィックスする場合、条件付きログライクな状態の相対的変化を調べる。
我々は総合的な実験を行い、ReCaLLがWikiMIAデータセット上で最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2024-06-23T00:23:13Z) - READ: Improving Relation Extraction from an ADversarial Perspective [33.44949503459933]
関係抽出(RE)に特化して設計された対角的学習法を提案する。
提案手法では,シーケンスレベルの摂動とトークンレベルの摂動の両方をサンプルに導入し,個別の摂動語彙を用いてエンティティとコンテキストの摂動の探索を改善する。
論文 参考訳(メタデータ) (2024-04-02T16:42:44Z) - C-ICL: Contrastive In-context Learning for Information Extraction [54.39470114243744]
c-ICLは、正しいサンプル構築と間違ったサンプル構築の両方を活用して、コンテキスト内学習のデモを作成する、新しい数ショット技術である。
各種データセットに対する実験により,c-ICLは従来の数発のインコンテキスト学習法よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-02-17T11:28:08Z) - Prompt-based Logical Semantics Enhancement for Implicit Discourse
Relation Recognition [4.7938839332508945]
Inlicit Discourse Relation Recognition (IDRR) のための Prompt-based Logical Semantics Enhancement (PLSE) 法を提案する。
提案手法は,事前学習した言語モデルに対する対話関係に関する知識を,素早い接続予測によってシームレスに注入する。
PDTB 2.0 と CoNLL16 データセットによる実験結果から,本手法は現状の最先端モデルに対して優れた一貫した性能を発揮することが示された。
論文 参考訳(メタデータ) (2023-11-01T08:38:08Z) - Context-faithful Prompting for Large Language Models [51.194410884263135]
大言語モデル(LLM)は世界事実に関するパラメトリック知識を符号化する。
パラメトリック知識への依存は、文脈的手がかりを見落とし、文脈に敏感なNLPタスクにおいて誤った予測をもたらす可能性がある。
我々は, LLMの文脈的忠実度を, 知識の衝突と, 棄権による予測の2つの側面で評価し, 向上する。
論文 参考訳(メタデータ) (2023-03-20T17:54:58Z) - Semantic Interactive Learning for Text Classification: A Constructive
Approach for Contextual Interactions [0.0]
本稿では,テキスト領域に対するセマンティック対話学習という新しいインタラクションフレームワークを提案する。
構築的および文脈的フィードバックを学習者に取り入れることで、人間と機械間のよりセマンティックなアライメントを実現するアーキテクチャを見つけることができる。
本研究では,人間の概念的修正を非外挿訓練例に翻訳するのに有効なSemanticPushという手法を提案する。
論文 参考訳(メタデータ) (2022-09-07T08:13:45Z) - Semantics-Preserved Distortion for Personal Privacy Protection in Information Management [65.08939490413037]
本稿では,意味的整合性を維持しつつテキストを歪ませる言語学的アプローチを提案する。
本稿では, 意味保存歪みの枠組みとして, 生成的アプローチと置換的アプローチの2つを提示する。
また、特定の医療情報管理シナリオにおけるプライバシ保護についても検討し、機密データの記憶を効果的に制限していることを示す。
論文 参考訳(メタデータ) (2022-01-04T04:01:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。