Automatic occlusion removal from 3D maps for maritime situational awareness
- URL: http://arxiv.org/abs/2409.03451v1
- Date: Thu, 5 Sep 2024 11:58:36 GMT
- Title: Automatic occlusion removal from 3D maps for maritime situational awareness
- Authors: Felix Sattler, Borja Carrillo Perez, Maurice Stephan, Sarah Barnes,
- Abstract summary: Traditional 3D reconstruction techniques often face problems with dynamic objects, like cars or vessels, that obscure the true environment.
Our approach leverages deep learning techniques, including instance segmentation and generative inpainting, to directly modify both the texture and geometry of 3D meshes.
By selectively targeting occluding objects and preserving static elements, the method enhances both geometric and visual accuracy.
- Score: 1.7661845949769064
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a novel method for updating 3D geospatial models, specifically targeting occlusion removal in large-scale maritime environments. Traditional 3D reconstruction techniques often face problems with dynamic objects, like cars or vessels, that obscure the true environment, leading to inaccurate models or requiring extensive manual editing. Our approach leverages deep learning techniques, including instance segmentation and generative inpainting, to directly modify both the texture and geometry of 3D meshes without the need for costly reprocessing. By selectively targeting occluding objects and preserving static elements, the method enhances both geometric and visual accuracy. This approach not only preserves structural and textural details of map data but also maintains compatibility with current geospatial standards, ensuring robust performance across diverse datasets. The results demonstrate significant improvements in 3D model fidelity, making this method highly applicable for maritime situational awareness and the dynamic display of auxiliary information.
Related papers
- Atlas3D: Physically Constrained Self-Supporting Text-to-3D for Simulation and Fabrication [50.541882834405946]
We introduce Atlas3D, an automatic and easy-to-implement text-to-3D method.
Our approach combines a novel differentiable simulation-based loss function with physically inspired regularization.
We verify Atlas3D's efficacy through extensive generation tasks and validate the resulting 3D models in both simulated and real-world environments.
arXiv Detail & Related papers (2024-05-28T18:33:18Z) - GEOcc: Geometrically Enhanced 3D Occupancy Network with Implicit-Explicit Depth Fusion and Contextual Self-Supervision [49.839374549646884]
This paper presents GEOcc, a Geometric-Enhanced Occupancy network tailored for vision-only surround-view perception.
Our approach achieves State-Of-The-Art performance on the Occ3D-nuScenes dataset with the least image resolution needed and the most weightless image backbone.
arXiv Detail & Related papers (2024-05-17T07:31:20Z) - Robust Geometry-Preserving Depth Estimation Using Differentiable
Rendering [93.94371335579321]
We propose a learning framework that trains models to predict geometry-preserving depth without requiring extra data or annotations.
Comprehensive experiments underscore our framework's superior generalization capabilities.
Our innovative loss functions empower the model to autonomously recover domain-specific scale-and-shift coefficients.
arXiv Detail & Related papers (2023-09-18T12:36:39Z) - FrozenRecon: Pose-free 3D Scene Reconstruction with Frozen Depth Models [67.96827539201071]
We propose a novel test-time optimization approach for 3D scene reconstruction.
Our method achieves state-of-the-art cross-dataset reconstruction on five zero-shot testing datasets.
arXiv Detail & Related papers (2023-08-10T17:55:02Z) - Normal Transformer: Extracting Surface Geometry from LiDAR Points
Enhanced by Visual Semantics [6.516912796655748]
This paper presents a technique for estimating the normal from 3D point clouds and 2D colour images.
We have developed a transformer neural network that learns to utilise the hybrid information of visual semantic and 3D geometric data.
arXiv Detail & Related papers (2022-11-19T03:55:09Z) - Learning Neural Implicit Representations with Surface Signal
Parameterizations [14.835882967340968]
We present a neural network architecture that implicitly encodes the underlying surface parameterization suitable for appearance data.
Our model remains compatible with existing mesh-based digital content with appearance data.
arXiv Detail & Related papers (2022-11-01T15:10:58Z) - Secrets of 3D Implicit Object Shape Reconstruction in the Wild [92.5554695397653]
Reconstructing high-fidelity 3D objects from sparse, partial observation is crucial for various applications in computer vision, robotics, and graphics.
Recent neural implicit modeling methods show promising results on synthetic or dense datasets.
But, they perform poorly on real-world data that is sparse and noisy.
This paper analyzes the root cause of such deficient performance of a popular neural implicit model.
arXiv Detail & Related papers (2021-01-18T03:24:48Z) - SCFusion: Real-time Incremental Scene Reconstruction with Semantic
Completion [86.77318031029404]
We propose a framework that performs scene reconstruction and semantic scene completion jointly in an incremental and real-time manner.
Our framework relies on a novel neural architecture designed to process occupancy maps and leverages voxel states to accurately and efficiently fuse semantic completion with the 3D global model.
arXiv Detail & Related papers (2020-10-26T15:31:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.