Normal Transformer: Extracting Surface Geometry from LiDAR Points
Enhanced by Visual Semantics
- URL: http://arxiv.org/abs/2211.10580v2
- Date: Thu, 6 Jul 2023 14:43:38 GMT
- Title: Normal Transformer: Extracting Surface Geometry from LiDAR Points
Enhanced by Visual Semantics
- Authors: Ancheng Lin, Jun Li
- Abstract summary: This paper presents a technique for estimating the normal from 3D point clouds and 2D colour images.
We have developed a transformer neural network that learns to utilise the hybrid information of visual semantic and 3D geometric data.
- Score: 6.516912796655748
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High-quality estimation of surface normal can help reduce ambiguity in many
geometry understanding problems, such as collision avoidance and occlusion
inference. This paper presents a technique for estimating the normal from 3D
point clouds and 2D colour images. We have developed a transformer neural
network that learns to utilise the hybrid information of visual semantic and 3D
geometric data, as well as effective learning strategies. Compared to existing
methods, the information fusion of the proposed method is more effective, which
is supported by experiments. We have also built a simulation environment of
outdoor traffic scenes in a 3D rendering engine to obtain annotated data to
train the normal estimator. The model trained on synthetic data is tested on
the real scenes in the KITTI dataset. And subsequent tasks built upon the
estimated normal directions in the KITTI dataset show that the proposed
estimator has advantage over existing methods.
Related papers
- Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
We propose a generative Bayesian network to produce diverse synthetic scenes with real-world patterns.
A series of experiments robustly display our method's consistent superiority over existing state-of-the-art pre-training approaches.
arXiv Detail & Related papers (2024-06-17T07:43:53Z) - ParaPoint: Learning Global Free-Boundary Surface Parameterization of 3D Point Clouds [52.03819676074455]
ParaPoint is an unsupervised neural learning pipeline for achieving global free-boundary surface parameterization.
This work makes the first attempt to investigate neural point cloud parameterization that pursues both global mappings and free boundaries.
arXiv Detail & Related papers (2024-03-15T14:35:05Z) - Single-Stage 3D Geometry-Preserving Depth Estimation Model Training on
Dataset Mixtures with Uncalibrated Stereo Data [4.199844472131922]
We propose GP$2$, General-Purpose and Geometry-Preserving training scheme for single-view depth estimation.
We show that GP$2$-trained models outperform methods relying on PCM in both accuracy and speed.
We also show that SVDE models can learn to predict geometrically correct depth even when geometrically complete data comprises the minor part of the training set.
arXiv Detail & Related papers (2023-06-05T13:49:24Z) - Geometry-Contrastive Transformer for Generalized 3D Pose Transfer [95.56457218144983]
The intuition of this work is to perceive the geometric inconsistency between the given meshes with the powerful self-attention mechanism.
We propose a novel geometry-contrastive Transformer that has an efficient 3D structured perceiving ability to the global geometric inconsistencies.
We present a latent isometric regularization module together with a novel semi-synthesized dataset for the cross-dataset 3D pose transfer task.
arXiv Detail & Related papers (2021-12-14T13:14:24Z) - RandomRooms: Unsupervised Pre-training from Synthetic Shapes and
Randomized Layouts for 3D Object Detection [138.2892824662943]
A promising solution is to make better use of the synthetic dataset, which consists of CAD object models, to boost the learning on real datasets.
Recent work on 3D pre-training exhibits failure when transfer features learned on synthetic objects to other real-world applications.
In this work, we put forward a new method called RandomRooms to accomplish this objective.
arXiv Detail & Related papers (2021-08-17T17:56:12Z) - Virtual Normal: Enforcing Geometric Constraints for Accurate and Robust
Depth Prediction [87.08227378010874]
We show the importance of the high-order 3D geometric constraints for depth prediction.
By designing a loss term that enforces a simple geometric constraint, we significantly improve the accuracy and robustness of monocular depth estimation.
We show state-of-the-art results of learning metric depth on NYU Depth-V2 and KITTI.
arXiv Detail & Related papers (2021-03-07T00:08:21Z) - DEF: Deep Estimation of Sharp Geometric Features in 3D Shapes [43.853000396885626]
We propose a learning-based framework for predicting sharp geometric features in sampled 3D shapes.
By fusing the result of individual patches, we can process large 3D models, which are impossible to process for existing data-driven methods.
arXiv Detail & Related papers (2020-11-30T18:21:00Z) - Exploring Deep 3D Spatial Encodings for Large-Scale 3D Scene
Understanding [19.134536179555102]
We propose an alternative approach to overcome the limitations of CNN based approaches by encoding the spatial features of raw 3D point clouds into undirected graph models.
The proposed method achieves on par state-of-the-art accuracy with improved training time and model stability thus indicating strong potential for further research.
arXiv Detail & Related papers (2020-11-29T12:56:19Z) - 3D Dense Geometry-Guided Facial Expression Synthesis by Adversarial
Learning [54.24887282693925]
We propose a novel framework to exploit 3D dense (depth and surface normals) information for expression manipulation.
We use an off-the-shelf state-of-the-art 3D reconstruction model to estimate the depth and create a large-scale RGB-Depth dataset.
Our experiments demonstrate that the proposed method outperforms the competitive baseline and existing arts by a large margin.
arXiv Detail & Related papers (2020-09-30T17:12:35Z) - Towards General Purpose Geometry-Preserving Single-View Depth Estimation [1.9573380763700712]
Single-view depth estimation (SVDE) plays a crucial role in scene understanding for AR applications, 3D modeling, and robotics.
Recent works have shown that a successful solution strongly relies on the diversity and volume of training data.
Our work shows that a model trained on this data along with conventional datasets can gain accuracy while predicting correct scene geometry.
arXiv Detail & Related papers (2020-09-25T20:06:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.