論文の概要: How Much Data is Enough Data? Fine-Tuning Large Language Models for In-House Translation: Performance Evaluation Across Multiple Dataset Sizes
- arxiv url: http://arxiv.org/abs/2409.03454v2
- Date: Tue, 10 Sep 2024 09:22:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-11 12:24:07.308273
- Title: How Much Data is Enough Data? Fine-Tuning Large Language Models for In-House Translation: Performance Evaluation Across Multiple Dataset Sizes
- Title(参考訳): データの量はいくらか? 家庭内翻訳のための微調整大言語モデル:複数のデータセットサイズでの性能評価
- Authors: Inacio Vieira, Will Allred, Séamus Lankford, Sheila Castilho, Andy Way,
- Abstract要約: ソフトウェア分野の特定の組織からTMを用いたLlama 3モデルの微調整の影響について検討する。
トレーニングセット毎にモデルを微調整し,自動メトリクス,BLEU,chrF++,TER,COMETに基づいて評価する。
以上の結果から,全指標にまたがるより大きなデータセットによる翻訳性能の向上が示された。
- 参考スコア(独自算出の注目度): 2.0109318570325847
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Decoder-only LLMs have shown impressive performance in MT due to their ability to learn from extensive datasets and generate high-quality translations. However, LLMs often struggle with the nuances and style required for organisation-specific translation. In this study, we explore the effectiveness of fine-tuning Large Language Models (LLMs), particularly Llama 3 8B Instruct, leveraging translation memories (TMs), as a valuable resource to enhance accuracy and efficiency. We investigate the impact of fine-tuning the Llama 3 model using TMs from a specific organisation in the software sector. Our experiments cover five translation directions across languages of varying resource levels (English to Brazilian Portuguese, Czech, German, Finnish, and Korean). We analyse diverse sizes of training datasets (1k to 207k segments) to evaluate their influence on translation quality. We fine-tune separate models for each training set and evaluate their performance based on automatic metrics, BLEU, chrF++, TER, and COMET. Our findings reveal improvement in translation performance with larger datasets across all metrics. On average, BLEU and COMET scores increase by 13 and 25 points, respectively, on the largest training set against the baseline model. Notably, there is a performance deterioration in comparison with the baseline model when fine-tuning on only 1k and 2k examples; however, we observe a substantial improvement as the training dataset size increases. The study highlights the potential of integrating TMs with LLMs to create bespoke translation models tailored to the specific needs of businesses, thus enhancing translation quality and reducing turn-around times. This approach offers a valuable insight for organisations seeking to leverage TMs and LLMs for optimal translation outcomes, especially in narrower domains.
- Abstract(参考訳): デコーダのみのLLMは、広範囲なデータセットから学習し、高品質な翻訳を生成することができるため、MTで顕著な性能を示している。
しかし、LLMは組織固有の翻訳に必要なニュアンスやスタイルに悩まされることが多い。
そこで本研究では,Llama 3 8Bインストラクションにおいて,翻訳記憶(TM)を有効活用し,精度と効率を向上させることを目的とした,微調整大規模言語モデル(LLM)の有効性について検討する。
ソフトウェア分野の特定の組織からTMを用いたLlama 3モデルの微調整の影響について検討する。
実験では,ブラジルポルトガル語,チェコ語,ドイツ語,フィンランド語,韓国語)の言語にまたがる5つの翻訳方向について検討した。
学習データセット(1k〜207kセグメント)のさまざまなサイズを分析し、翻訳品質への影響を評価した。
トレーニングセット毎にモデルを微調整し,自動メトリクス,BLEU,chrF++,TER,COMETに基づいて評価する。
以上の結果から,全指標にまたがるより大きなデータセットによる翻訳性能の向上が示された。
BLEUとCOMETのスコアは,ベースラインモデルに対する最大のトレーニングセットでそれぞれ13点,25点増加した。
特に, 1k と 2k のサンプルのみを微調整すると, ベースラインモデルと比較して性能が低下するが, トレーニングデータセットのサイズが大きくなるにつれて, 大幅な改善が見られた。
この研究は、TMをLLMと統合し、ビジネスのニーズに合わせたベスパイク翻訳モデルを作成する可能性を強調し、翻訳品質を向上し、ターンアラウンド時間を短縮する。
このアプローチは、特に狭いドメインにおいて、最適な翻訳結果にTMとLLMを活用しようとする組織にとって、貴重な洞察を提供する。
関連論文リスト
- Improving Language Models Trained on Translated Data with Continual Pre-Training and Dictionary Learning Analysis [3.16714407449467]
学習言語モデルにおける翻訳と合成データの役割について検討する。
NLLB-3B MTモデルを用いて英語からアラビア語に翻訳した。
これらの問題を是正するために、我々は、合成された高品質のアラビア物語の小さなデータセットでモデルを事前訓練する。
論文 参考訳(メタデータ) (2024-05-23T07:53:04Z) - Building Accurate Translation-Tailored LLMs with Language Aware Instruction Tuning [57.323716555996114]
オフターゲット翻訳は、特に低リソース言語では未解決の問題である。
最近の研究は、翻訳命令の機能を強調するために高度なプロンプト戦略を設計するか、LLMの文脈内学習能力を活用している。
本研究では,LLMの命令追従能力(特に翻訳方向)を向上させるために,2段階の微調整アルゴリズムを設計する。
論文 参考訳(メタデータ) (2024-03-21T13:47:40Z) - A Novel Paradigm Boosting Translation Capabilities of Large Language Models [11.537249547487045]
本論文は,一貫した単言語データを用いた二次事前学習,インターリニアテキストフォーマット文書による継続事前学習,および教師付きファインチューニングのためのソース・ランゲージ・コンスタント・インストラクションの活用という,3つの段階からなる新しいパラダイムを提案する。
Llama2モデルを用いた実験結果,特に中国語-Llama2を用いて,LLMの翻訳能力の向上を実証した。
論文 参考訳(メタデータ) (2024-03-18T02:53:49Z) - Adapting Large Language Models for Document-Level Machine Translation [46.370862171452444]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクを大幅に進歩させた。
近年の研究では、中程度のLLMはタスク固有の微調整後、より大きなLLMよりも優れていることが示されている。
本研究では,特定の言語対に対する文書レベルの機械翻訳(DocMT)にLLMを適用することに焦点を当てた。
論文 参考訳(メタデータ) (2024-01-12T09:29:13Z) - Improving Translation Faithfulness of Large Language Models via
Augmenting Instructions [89.76691340615848]
SWIE(Segment-Weighted Instruction Embedding)と命令追従データセットOVERMISSを提案する。
SWIEは、以下の入力および応答表現に大域的な命令表現を追加することにより、モデル命令理解を改善する。
OVERMISSは、オーバー翻訳とミス翻訳の結果を正しい翻訳と比較することにより、モデルの忠実度を向上させる。
論文 参考訳(メタデータ) (2023-08-24T09:32:29Z) - Unified Model Learning for Various Neural Machine Translation [63.320005222549646]
既存の機械翻訳(NMT)研究は主にデータセット固有のモデルの開発に焦点を当てている。
我々は,NMT(UMLNMT)のための統一モデル学習モデル(Unified Model Learning for NMT)を提案する。
OurNMTは、データセット固有のモデルよりも大幅に改善され、モデルデプロイメントコストが大幅に削減される。
論文 参考訳(メタデータ) (2023-05-04T12:21:52Z) - Improving Multilingual Translation by Representation and Gradient
Regularization [82.42760103045083]
表現レベルと勾配レベルの両方でNMTモデルを正規化するための共同手法を提案する。
提案手法は,オフターゲット翻訳の発生率の低減とゼロショット翻訳性能の向上に有効であることを示す。
論文 参考訳(メタデータ) (2021-09-10T10:52:21Z) - Distributionally Robust Multilingual Machine Translation [94.51866646879337]
本稿では,分散的ロバストな最適化に基づくMNMT(Multilingual Neural Machine Translation)の新しい学習目標を提案する。
この目的を,反復的最適応答方式を用いて,大規模翻訳コーパスに対して実用的に最適化する方法を示す。
本手法は,多対一の翻訳設定と多対多の翻訳設定の両方において,平均と言語毎のパフォーマンスにおいて,強いベースライン法より一貫して優れる。
論文 参考訳(メタデータ) (2021-09-09T03:48:35Z) - Beyond English-Centric Multilingual Machine Translation [74.21727842163068]
我々は真の多言語多言語翻訳モデルを作成し、100言語のいずれかのペア間で直接翻訳できる。
大規模なマイニングによって生成された教師付きデータで、数千の言語方向をカバーするトレーニングデータセットを構築し、オープンソースにしています。
WMTのベストシングルシステムに競争力を持たせながら、非英語の方向を直接翻訳する場合、非英語モデルに焦点をあてると10 BLEU以上のゲインが得られる。
論文 参考訳(メタデータ) (2020-10-21T17:01:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。