Characterizing Massive Activations of Attention Mechanism in Graph Neural Networks
- URL: http://arxiv.org/abs/2409.03463v2
- Date: Tue, 24 Sep 2024 09:13:41 GMT
- Title: Characterizing Massive Activations of Attention Mechanism in Graph Neural Networks
- Authors: Lorenzo Bini, Marco Sorbi, Stephane Marchand-Maillet,
- Abstract summary: Recently, attention mechanisms have been integrated into Graph Neural Networks (GNNs) to improve their ability to capture complex patterns.
This paper presents the first comprehensive study revealing the emergence of Massive Activations (MAs) within attention layers.
Our study assesses various GNN models using benchmark datasets, including ZINC, TOX21, and PROTEINS.
- Score: 0.9499648210774584
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) have become increasingly popular for effectively modeling data with graph structures. Recently, attention mechanisms have been integrated into GNNs to improve their ability to capture complex patterns. This paper presents the first comprehensive study revealing a critical, unexplored consequence of this integration: the emergence of Massive Activations (MAs) within attention layers. We introduce a novel method for detecting and analyzing MAs, focusing on edge features in different graph transformer architectures. Our study assesses various GNN models using benchmark datasets, including ZINC, TOX21, and PROTEINS. Key contributions include (1) establishing the direct link between attention mechanisms and MAs generation in GNNs, (2) developing a robust definition and detection method for MAs based on activation ratio distributions, (3) introducing the Explicit Bias Term (EBT) as a potential countermeasure and exploring it as an adversarial framework to assess models robustness based on the presence or absence of MAs. Our findings highlight the prevalence and impact of attention-induced MAs across different architectures, such as GraphTransformer, GraphiT, and SAN. The study reveals the complex interplay between attention mechanisms, model architecture, dataset characteristics, and MAs emergence, providing crucial insights for developing more robust and reliable graph models.
Related papers
- Node Classification via Semantic-Structural Attention-Enhanced Graph Convolutional Networks [0.9463895540925061]
We introduce the semantic-structural attention-enhanced graph convolutional network (SSA-GCN)
It not only models the graph structure but also extracts generalized unsupervised features to enhance classification performance.
Our experiments on the Cora and CiteSeer datasets demonstrate the performance improvements achieved by our proposed method.
arXiv Detail & Related papers (2024-03-24T06:28:54Z) - Investigating Out-of-Distribution Generalization of GNNs: An
Architecture Perspective [45.352741792795186]
We show that the graph self-attention mechanism and the decoupled architecture contribute positively to graph OOD generalization.
We develop a novel GNN backbone model, DGAT, designed to harness the robust properties of both graph self-attention mechanism and the decoupled architecture.
arXiv Detail & Related papers (2024-02-13T05:38:45Z) - Enhanced LFTSformer: A Novel Long-Term Financial Time Series Prediction Model Using Advanced Feature Engineering and the DS Encoder Informer Architecture [0.8532753451809455]
This study presents a groundbreaking model for forecasting long-term financial time series, termed the Enhanced LFTSformer.
The model distinguishes itself through several significant innovations.
Systematic experimentation on a range of benchmark stock market datasets demonstrates that the Enhanced LFTSformer outperforms traditional machine learning models.
arXiv Detail & Related papers (2023-10-03T08:37:21Z) - Causally-guided Regularization of Graph Attention Improves
Generalizability [69.09877209676266]
We introduce CAR, a general-purpose regularization framework for graph attention networks.
Methodname aligns the attention mechanism with the causal effects of active interventions on graph connectivity.
For social media network-sized graphs, a CAR-guided graph rewiring approach could allow us to combine the scalability of graph convolutional methods with the higher performance of graph attention.
arXiv Detail & Related papers (2022-10-20T01:29:10Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
Heterogeneous graph neural network (HGNN) is a very popular technique for the modeling and analysis of heterogeneous graphs.
We develop for the first time a novel and robust heterogeneous graph contrastive learning approach, namely HGCL, which introduces two views on respective guidance of node attributes and graph topologies.
In this new approach, we adopt distinct but most suitable attribute and topology fusion mechanisms in the two views, which are conducive to mining relevant information in attributes and topologies separately.
arXiv Detail & Related papers (2022-04-30T12:57:02Z) - EXPERT: Public Benchmarks for Dynamic Heterogeneous Academic Graphs [5.4744970832051445]
We present a variety of large scale, dynamic heterogeneous academic graphs to test the effectiveness of models developed for graph forecasting tasks.
Our novel datasets cover both context and content information extracted from scientific publications across two communities: Artificial Intelligence (AI) and Nuclear Nonproliferation (NN)
arXiv Detail & Related papers (2022-04-14T19:43:34Z) - How Knowledge Graph and Attention Help? A Quantitative Analysis into
Bag-level Relation Extraction [66.09605613944201]
We quantitatively evaluate the effect of attention and Knowledge Graph on bag-level relation extraction (RE)
We find that (1) higher attention accuracy may lead to worse performance as it may harm the model's ability to extract entity mention features; (2) the performance of attention is largely influenced by various noise distribution patterns; and (3) KG-enhanced attention indeed improves RE performance, while not through enhanced attention but by incorporating entity prior.
arXiv Detail & Related papers (2021-07-26T09:38:28Z) - Deep brain state classification of MEG data [2.9048924265579124]
This paper uses Magnetoencephalography (MEG) data, provided by the Human Connectome Project (HCP), in combination with various deep artificial neural network models to perform brain decoding.
arXiv Detail & Related papers (2020-07-02T05:51:57Z) - Graph Backdoor [53.70971502299977]
We present GTA, the first backdoor attack on graph neural networks (GNNs)
GTA departs in significant ways: it defines triggers as specific subgraphs, including both topological structures and descriptive features.
It can be instantiated for both transductive (e.g., node classification) and inductive (e.g., graph classification) tasks.
arXiv Detail & Related papers (2020-06-21T19:45:30Z) - Multi-View Graph Neural Networks for Molecular Property Prediction [67.54644592806876]
We present Multi-View Graph Neural Network (MV-GNN), a multi-view message passing architecture.
In MV-GNN, we introduce a shared self-attentive readout component and disagreement loss to stabilize the training process.
We further boost the expressive power of MV-GNN by proposing a cross-dependent message passing scheme.
arXiv Detail & Related papers (2020-05-17T04:46:07Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
We propose a novel concept, Graphical Mutual Information (GMI), to measure the correlation between input graphs and high-level hidden representations.
We develop an unsupervised learning model trained by maximizing GMI between the input and output of a graph neural encoder.
arXiv Detail & Related papers (2020-02-04T08:33:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.