論文の概要: Towards Data-Centric Face Anti-Spoofing: Improving Cross-domain Generalization via Physics-based Data Synthesis
- arxiv url: http://arxiv.org/abs/2409.03501v1
- Date: Wed, 4 Sep 2024 01:45:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 20:40:17.877615
- Title: Towards Data-Centric Face Anti-Spoofing: Improving Cross-domain Generalization via Physics-based Data Synthesis
- Title(参考訳): データ中心型アンチスプーフィングに向けて:物理データ合成によるクロスドメイン一般化の改善
- Authors: Rizhao Cai, Cecelia Soh, Zitong Yu, Haoliang Li, Wenhan Yang, Alex Kot,
- Abstract要約: Face Anti-Spoofing (FAS) 研究は、トレーニングデータとテストデータの間にドメインギャップがあるクロスドメイン問題によって難題となっている。
本研究では,タスク固有のFASデータ拡張(FAS-Aug)を提案する。
また,特定の種類のアーティファクトをモデルが依存しないようにし,一般化性能を向上させるために,SARE(Spowing Attack Risk Equalization)を提案する。
- 参考スコア(独自算出の注目度): 64.46312434121455
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Face Anti-Spoofing (FAS) research is challenged by the cross-domain problem, where there is a domain gap between the training and testing data. While recent FAS works are mainly model-centric, focusing on developing domain generalization algorithms for improving cross-domain performance, data-centric research for face anti-spoofing, improving generalization from data quality and quantity, is largely ignored. Therefore, our work starts with data-centric FAS by conducting a comprehensive investigation from the data perspective for improving cross-domain generalization of FAS models. More specifically, at first, based on physical procedures of capturing and recapturing, we propose task-specific FAS data augmentation (FAS-Aug), which increases data diversity by synthesizing data of artifacts, such as printing noise, color distortion, moir\'e pattern, \textit{etc}. Our experiments show that using our FAS augmentation can surpass traditional image augmentation in training FAS models to achieve better cross-domain performance. Nevertheless, we observe that models may rely on the augmented artifacts, which are not environment-invariant, and using FAS-Aug may have a negative effect. As such, we propose Spoofing Attack Risk Equalization (SARE) to prevent models from relying on certain types of artifacts and improve the generalization performance. Last but not least, our proposed FAS-Aug and SARE with recent Vision Transformer backbones can achieve state-of-the-art performance on the FAS cross-domain generalization protocols. The implementation is available at https://github.com/RizhaoCai/FAS_Aug.
- Abstract(参考訳): Face Anti-Spoofing (FAS) 研究は、トレーニングデータとテストデータの間にドメインギャップがあるクロスドメイン問題によって難題となっている。
最近のFAS研究は主にモデル中心のものであり、ドメイン間パフォーマンスを改善するためのドメイン一般化アルゴリズムの開発に重点を置いているが、顔の反偽造のためのデータ中心の研究、データ品質と量からの一般化の改善は無視されている。
したがって、本研究は、データの観点から総合的な調査を行い、FASモデルのクロスドメイン一般化を改善することで、データ中心のFASから開始する。
より具体的には,まず,印刷ノイズ,色歪み,moir\'eパターン, \textit{etc} などのアーティファクトのデータを合成することにより,データ多様性を向上させるタスク固有のFASデータ拡張(FAS-Aug)を提案する。
実験の結果,FASモデルを用いたトレーニングにおいて,従来の画像拡張を超越し,ドメイン間性能の向上が期待できることがわかった。
しかしながら,FAS-Augを用いた場合,環境不変ではない拡張アーティファクトに依存する可能性があり,否定的な効果が生じる可能性がある。
そこで我々は,特定の種類のアーティファクトをモデルが依存することを防止し,一般化性能を向上させるために,SARE(Spowing Attack Risk Equalization)を提案する。
最後に、最新のVision Transformerバックボーンを用いたFAS-AugとSAREは、FASクロスドメインの一般化プロトコル上で最先端のパフォーマンスを実現することができる。
実装はhttps://github.com/RizhaoCai/FAS_Aug.comで公開されている。
関連論文リスト
- A visualization method for data domain changes in CNN networks and the optimization method for selecting thresholds in classification tasks [1.1118946307353794]
Face Anti-Spoofing (FAS) は、顔認識技術のセキュリティを維持する上で重要な役割を担っている。
偽造顔生成技術の台頭に伴い、デジタル編集された顔が反偽造に直面する課題がエスカレートしている。
本稿では,データセット上での予測結果を可視化することにより,モデルのトレーニング結果を直感的に反映する可視化手法を提案する。
論文 参考訳(メタデータ) (2024-04-19T03:12:17Z) - Test-Time Domain Generalization for Face Anti-Spoofing [60.94384914275116]
Face Anti-Spoofing (FAS) は、顔認識システムをプレゼンテーション攻撃から保護するために重要である。
本稿では,テストデータを活用してモデルの一般化性を高める新しいテスト時間領域一般化フレームワークについて紹介する。
テスト時間スタイル投影 (TTSP) とディバーススタイルシフトシミュレーション (DSSS) によって構成された本手法は, 目に見えないデータを領域空間に効果的に投影する。
論文 参考訳(メタデータ) (2024-03-28T11:50:23Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
現在の知覚モデルは、リソース集約的なデータセットに大きく依存している。
セグメンテーションを通じて知覚認識損失(P.A.損失)を導入し、品質と制御性の両方を改善した。
本手法は,世代間における知覚認識属性(P.A. Attr)の抽出と利用により,データ拡張をカスタマイズする。
論文 参考訳(メタデータ) (2024-03-20T04:58:03Z) - Fourier-basis Functions to Bridge Augmentation Gap: Rethinking Frequency
Augmentation in Image Classification [3.129187821625805]
AFA(Auxiliary Fourier-Basis Augmentation)は、周波数領域の増大を狙った技法であり、視覚的な拡張によって残された拡張ギャップを埋めるものである。
以上の結果から,AFAは,一般的な汚職に対するモデルの堅牢性,OODの一般化,モデルの性能の整合性,摂動の増大に対するモデルの性能の整合性,モデルの標準性能に対する無視的欠陥に寄与することが示唆された。
論文 参考訳(メタデータ) (2024-03-04T11:30:02Z) - Generalized Face Liveness Detection via De-spoofing Face Generator [58.7043386978171]
以前のFace Anti-Spoofing (FAS) の作業は、目に見えない領域における一般化という課題に直面している。
De-spoofing Face Generator (DFG) によるモデル一般化を改善するために, 現実の顔を利用する Anomalous cue Guided FAS (AG-FAS) 方式を実行する。
次に,Anomalous cue Guided FAS feature extract Network (AG-Net)を提案する。
論文 参考訳(メタデータ) (2024-01-17T06:59:32Z) - S-Adapter: Generalizing Vision Transformer for Face Anti-Spoofing with Statistical Tokens [45.06704981913823]
Face Anti-Spoofing (FAS) は、スプーフされた顔を表示することによって、顔認識システムに侵入しようとする悪意のある試みを検出することを目的としている。
本稿では,局所的なトークンヒストグラムから局所的な識別や統計情報を収集する新しい統計適応器(S-Adapter)を提案する。
統計的トークンの一般化をさらに改善するために,新しいトークンスタイル正規化(TSR)を提案する。
提案したS-AdapterとTSRは、ゼロショットと少数ショットのクロスドメインテストの両方において、いくつかのベンチマークテストにおいて、最先端の手法よりも優れた、大きなメリットをもたらすことを示した。
論文 参考訳(メタデータ) (2023-09-07T22:36:22Z) - Robust face anti-spoofing framework with Convolutional Vision
Transformer [1.7596501992526474]
本研究では、様々な未確認領域データに対して堅牢な性能を実現する畳み込み型視覚変換器に基づくフレームワークを提案する。
また、ドメイン一般化のための他の9つのベンチマークモデルよりも、クロスデータセット設定のサブプロトコールにおける最も高い平均ランクを示す。
論文 参考訳(メタデータ) (2023-07-24T00:03:09Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
表情認識のためのSFUDA法を提案する。
本手法は,自己教師付き事前学習を利用して,対象データから優れた特徴表現を学習する。
提案手法の有効性を4つの適応方式で検証し,FERに適用した場合,既存のSFUDA法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:24:50Z) - Escaping Data Scarcity for High-Resolution Heterogeneous Face
Hallucination [68.78903256687697]
Heterogeneous Face Recognition (HFR) では、視覚や熱といった2つの異なる領域にまたがる顔のマッチングが目的である。
合成によるギャップを埋めようとする最近の手法は有望な結果を得たが、ペアトレーニングデータの不足により、その性能は依然として制限されている。
本稿では,HFRのための新しい顔幻覚パラダイムを提案する。これはデータ効率のよい合成を可能にするだけでなく,プライバシポリシーを破ることなくモデルトレーニングのスケールアップを可能にする。
論文 参考訳(メタデータ) (2022-03-30T20:44:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。