論文の概要: Risk-based Calibration for Probabilistic Classifiers
- arxiv url: http://arxiv.org/abs/2409.03542v1
- Date: Thu, 5 Sep 2024 14:06:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 20:28:22.287652
- Title: Risk-based Calibration for Probabilistic Classifiers
- Title(参考訳): 確率的分類器のリスクに基づく校正
- Authors: Aritz Pérez, Carlos Echegoyen, Guzmán Santafé,
- Abstract要約: リスクベースキャリブレーション(RC)と呼ばれる一般的な反復的手法を導入し,0-1損失による経験的リスクを最小限に抑える。
RCは、元の閉形式学習アルゴリズムの経験的誤りを改善し、より顕著に、勾配降下法よりも一貫して優れている。
- 参考スコア(独自算出の注目度): 4.792851066169872
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We introduce a general iterative procedure called risk-based calibration (RC) designed to minimize the empirical risk under the 0-1 loss (empirical error) for probabilistic classifiers. These classifiers are based on modeling probability distributions, including those constructed from the joint distribution (generative) and those based on the class conditional distribution (conditional). RC can be particularized to any probabilistic classifier provided a specific learning algorithm that computes the classifier's parameters in closed form using data statistics. RC reinforces the statistics aligned with the true class while penalizing those associated with other classes, guided by the 0-1 loss. The proposed method has been empirically tested on 30 datasets using na\"ive Bayes, quadratic discriminant analysis, and logistic regression classifiers. RC improves the empirical error of the original closed-form learning algorithms and, more notably, consistently outperforms the gradient descent approach with the three classifiers.
- Abstract(参考訳): 本稿では,確率的分類器の0-1損失(経験的誤り)における経験的リスクを最小限に抑えるために,リスクベースキャリブレーション(RC)と呼ばれる一般的な反復的手順を導入する。
これらの分類器は、結合分布(生成)とクラス条件分布(条件)に基づいて構築された確率分布のモデル化に基づいている。
RCは任意の確率的分類器に特殊化することができ、データ統計を用いて分類器のパラメータを閉じた形で計算する特定の学習アルゴリズムを提供する。
RCは真のクラスと一致した統計を補強し、0-1の損失によって導かれる他のクラスに関連付けられた統計を罰する。
提案手法は,Na\\ive Bayes,2次判別分析,ロジスティック回帰分類器を用いて,30のデータセットで実証実験を行った。
RCは、元の閉形式学習アルゴリズムの経験的誤差を改善し、より顕著なことに、3つの分類器による勾配降下法よりも一貫して優れている。
関連論文リスト
- A Hard-to-Beat Baseline for Training-free CLIP-based Adaptation [121.0693322732454]
対照的に、CLIP(Contrastive Language- Image Pretraining)はその目覚ましいゼロショット能力で人気を集めている。
近年の研究では、下流タスクにおけるCLIPの性能を高めるための効率的な微調整手法の開発に焦点が当てられている。
従来のアルゴリズムであるガウス判別分析(GDA)を再検討し,CLIPの下流分類に適用する。
論文 参考訳(メタデータ) (2024-02-06T15:45:27Z) - Probabilistic Safety Regions Via Finite Families of Scalable Classifiers [2.431537995108158]
監視された分類は、データのパターンを認識して、振る舞いのクラスを分離する。
正準解は、機械学習の数値近似の性質に固有の誤分類誤差を含む。
本稿では,確率論的安全性領域の概念を導入し,入力空間のサブセットとして,誤分類されたインスタンスの数を確率論的に制御する手法を提案する。
論文 参考訳(メタデータ) (2023-09-08T22:40:19Z) - Distributionally Robust Multiclass Classification and Applications in
Deep Image Classifiers [9.979945269265627]
マルチクラスロジスティック回帰(MLR)のための分布ロバスト最適化(DRO)の定式化を開発する。
本研究では,新しいランダムトレーニング手法を採用することにより,試験誤差率を最大83.5%,損失を最大91.3%削減することを示した。
論文 参考訳(メタデータ) (2022-10-15T05:09:28Z) - Learnable Distribution Calibration for Few-Shot Class-Incremental
Learning [122.2241120474278]
FSCIL(Few-shot class-incremental Learning)は、古いクラス分布を記憶し、少数のトレーニングサンプルから新しいクラス分布を推定するという課題に直面している。
本稿では,これら2つの課題を統一フレームワークを用いて体系的に解決することを目的とした,学習可能な分布校正手法を提案する。
論文 参考訳(メタデータ) (2022-10-01T09:40:26Z) - Self-Certifying Classification by Linearized Deep Assignment [65.0100925582087]
そこで我々は,PAC-Bayesリスク認定パラダイム内で,グラフ上のメトリックデータを分類するための新しい深層予測器のクラスを提案する。
PAC-Bayesの最近の文献とデータに依存した先行研究に基づいて、この手法は仮説空間上の後続分布の学習を可能にする。
論文 参考訳(メタデータ) (2022-01-26T19:59:14Z) - When in Doubt: Improving Classification Performance with Alternating
Normalization [57.39356691967766]
分類のための非パラメトリック後処理ステップである交互正規化(CAN)を用いた分類を導入する。
CANは、予測されたクラス確率分布を再調整することで、挑戦的な例の分類精度を向上させる。
多様な分類課題にまたがってその効果を実証的に示す。
論文 参考訳(メタデータ) (2021-09-28T02:55:42Z) - Distributionally Robust Multiclass Classification and Applications in
Deep Image Classifiers [3.179831861897336]
マルチクラスロジスティック回帰(MLR)のための分布ロバスト最適化(DRO)の定式化を開発する。
本研究では,新しいランダムトレーニング手法を採用することにより,試験誤差率を最大83.5%,損失を最大91.3%削減することを示した。
論文 参考訳(メタデータ) (2021-09-27T02:58:19Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z) - VaB-AL: Incorporating Class Imbalance and Difficulty with Variational
Bayes for Active Learning [38.33920705605981]
本研究では,クラス不均衡をアクティブラーニングフレームワークに自然に組み込む手法を提案する。
提案手法は,複数の異なるデータセットのタスク分類に適用可能であることを示す。
論文 参考訳(メタデータ) (2020-03-25T07:34:06Z) - Certified Robustness to Label-Flipping Attacks via Randomized Smoothing [105.91827623768724]
機械学習アルゴリズムは、データ中毒攻撃の影響を受けやすい。
任意の関数に対するランダム化スムージングの統一的なビューを示す。
本稿では,一般的なデータ中毒攻撃に対して,ポイントワイズで確実に堅牢な分類器を構築するための新しい戦略を提案する。
論文 参考訳(メタデータ) (2020-02-07T21:28:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。