On the Limited Generalization Capability of the Implicit Reward Model Induced by Direct Preference Optimization
- URL: http://arxiv.org/abs/2409.03650v2
- Date: Thu, 3 Oct 2024 17:13:04 GMT
- Title: On the Limited Generalization Capability of the Implicit Reward Model Induced by Direct Preference Optimization
- Authors: Yong Lin, Skyler Seto, Maartje ter Hoeve, Katherine Metcalf, Barry-John Theobald, Xuan Wang, Yizhe Zhang, Chen Huang, Tong Zhang,
- Abstract summary: Two main approaches for learning a reward model are 1) training an EXplicit Reward Model (EXRM) as in RLHF, and 2) using an implicit reward learned from preference data through methods such as Direct Preference Optimization (DPO)
This work studies the accuracy at distinguishing preferred and rejected answers for both DPORM and EXRM.
- Score: 25.76847680704863
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement Learning from Human Feedback (RLHF) is an effective approach for aligning language models to human preferences. Central to RLHF is learning a reward function for scoring human preferences. Two main approaches for learning a reward model are 1) training an EXplicit Reward Model (EXRM) as in RLHF, and 2) using an implicit reward learned from preference data through methods such as Direct Preference Optimization (DPO). Prior work has shown that the implicit reward model of DPO (denoted as DPORM) can approximate an EXRM in the limit. DPORM's effectiveness directly implies the optimality of the learned policy, and also has practical implication for LLM alignment methods including iterative DPO. However, it is unclear how well DPORM empirically matches the performance of EXRM. This work studies the accuracy at distinguishing preferred and rejected answers for both DPORM and EXRM. Our findings indicate that even though DPORM fits the training dataset comparably, it generalizes less effectively than EXRM, especially when the validation datasets contain distribution shifts. Across five out-of-distribution settings, DPORM has a mean drop in accuracy of 3% and a maximum drop of 7%. These findings highlight that DPORM has limited generalization ability and substantiates the integration of an explicit reward model in iterative DPO approaches.
Related papers
- Reward-Augmented Data Enhances Direct Preference Alignment of LLMs [63.32585910975191]
We introduce reward-conditioned Large Language Models (LLMs) that learn from the entire spectrum of response quality within the dataset.
We propose an effective yet simple data relabeling method that conditions the preference pairs on quality scores to construct a reward-augmented dataset.
arXiv Detail & Related papers (2024-10-10T16:01:51Z) - Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness [27.43137305486112]
We propose a novel Self-supervised Preference Optimization (SPO) framework, which constructs a self-supervised preference degree loss combined with the alignment loss.
The results demonstrate that SPO can be seamlessly integrated with existing preference optimization methods to achieve state-of-the-art performance.
arXiv Detail & Related papers (2024-09-26T12:37:26Z) - Zeroth-Order Policy Gradient for Reinforcement Learning from Human
Feedback without Reward Inference [17.76565371753346]
This paper develops two RLHF algorithms without reward inference.
The key idea is to estimate the local value function difference from human preferences and then approximate the policy gradient with a zeroth-order gradient approximator.
Our results show there exist provably efficient methods to solve general RLHF problems without reward inference.
arXiv Detail & Related papers (2024-09-25T22:20:11Z) - Bridging and Modeling Correlations in Pairwise Data for Direct Preference Optimization [75.1240295759264]
We propose an effective framework for Bridging and Modeling Correlations in pairwise data, named BMC.
We increase the consistency and informativeness of the pairwise preference signals through targeted modifications.
We identify that DPO alone is insufficient to model these correlations and capture nuanced variations.
arXiv Detail & Related papers (2024-08-14T11:29:47Z) - Robust Preference Optimization through Reward Model Distillation [68.65844394615702]
Language model (LM) post-training involves maximizing a reward function that is derived from preference annotations.
DPO is a popular offline alignment method that trains a policy directly on preference data without the need to train a reward model or apply reinforcement learning.
We analyze this phenomenon and propose distillation to get a better proxy for the true preference distribution over generation pairs.
arXiv Detail & Related papers (2024-05-29T17:39:48Z) - Weak-to-Strong Extrapolation Expedites Alignment [135.12769233630362]
We propose a method called ExPO to boost models' alignment with human preference.
We demonstrate that ExPO consistently improves off-the-shelf DPO/RLHF models.
We shed light on the essence of ExPO amplifying the reward signal learned during alignment training.
arXiv Detail & Related papers (2024-04-25T17:39:50Z) - Mixed Preference Optimization: Reinforcement Learning with Data Selection and Better Reference Model [3.300814846990438]
Large Language Models (LLMs) have become increasingly popular due to their ability to process and generate natural language.
As they are trained on massive datasets of text, LLMs can inherit harmful biases and produce outputs that are not aligned with human values.
This paper studies two main approaches to LLM alignment: Reinforcement Learning with Human Feedback (RLHF) and contrastive learning-based methods like Direct Preference Optimization (DPO)
By analyzing the stability and robustness of RLHF and DPO, we propose MPO, a novel method that mitigates the weaknesses of both approaches.
arXiv Detail & Related papers (2024-03-28T14:15:10Z) - PRDP: Proximal Reward Difference Prediction for Large-Scale Reward Finetuning of Diffusion Models [13.313186665410486]
Reward finetuning has emerged as a promising approach to aligning foundation models with downstream objectives.
Existing reward finetuning methods are limited by their instability in large-scale prompt datasets.
We propose Proximal Reward Difference Prediction (PRDP) to enable stable black-box reward finetuning for diffusion models.
arXiv Detail & Related papers (2024-02-13T18:58:16Z) - Secrets of RLHF in Large Language Models Part II: Reward Modeling [134.97964938009588]
We introduce a series of novel methods to mitigate the influence of incorrect and ambiguous preferences in the dataset.
We also introduce contrastive learning to enhance the ability of reward models to distinguish between chosen and rejected responses.
arXiv Detail & Related papers (2024-01-11T17:56:59Z) - Direct Preference Optimization: Your Language Model is Secretly a Reward Model [119.65409513119963]
We introduce a new parameterization of the reward model in RLHF that enables extraction of the corresponding optimal policy in closed form.
The resulting algorithm, which we call Direct Preference Optimization (DPO), is stable, performant, and computationally lightweight.
Our experiments show that DPO can fine-tune LMs to align with human preferences as well as or better than existing methods.
arXiv Detail & Related papers (2023-05-29T17:57:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.