論文の概要: Unsupervised Anomaly Detection and Localization with Generative Adversarial Networks
- arxiv url: http://arxiv.org/abs/2409.03657v1
- Date: Thu, 5 Sep 2024 16:11:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 20:03:34.021903
- Title: Unsupervised Anomaly Detection and Localization with Generative Adversarial Networks
- Title(参考訳): 生成逆ネットワークによる教師なし異常検出と位置決め
- Authors: Khouloud Abdelli, Matteo Lonardi, Jurgen Gripp, Samuel Olsson, Fabien Boitier, Patricia Layec,
- Abstract要約: 生成逆数ネットワークとSOP由来のスペクトログラムを用いた新しい教師なし異常検出手法を提案する。
顕著な有効性を示すため,本手法は海底および地上のファイバリンクからSOPデータセットを97%以上精度で取得する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel unsupervised anomaly detection approach using generative adversarial networks and SOP-derived spectrograms. Demonstrating remarkable efficacy, our method achieves over 97% accuracy on SOP datasets from both submarine and terrestrial fiber links, all achieved without the need for labelled data.
- Abstract(参考訳): 生成逆数ネットワークとSOP由来のスペクトログラムを用いた新しい教師なし異常検出手法を提案する。
顕著な有効性を示すため,本手法は海底および地上のファイバリンクからのSOPデータセットに対して97%以上の精度を達成し,ラベル付きデータを必要とせずに達成した。
関連論文リスト
- Always be Pre-Training: Representation Learning for Network Intrusion Detection with GNNs [6.589041710104928]
グラフニューラルネットワークに基づくネットワーク侵入検知システムは、最近、ベンチマークデータセットで最先端のパフォーマンスを実証した。
これらの手法は、データ前処理のターゲットエンコーディングに依存しており、アノテートされたラベルを必要とするため、広く採用されることが制限される。
本稿では,ラベル依存度制限を克服するために,文脈内事前学習とカテゴリ的特徴に対する高密度表現の利用を含むソリューションを提案する。
論文 参考訳(メタデータ) (2024-02-29T09:40:07Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
具体的には,大規模ビジュアルデータセット上で事前学習されたモデルを利用した初期のマルチモーダルアプローチについて検討する。
本研究では,アダプタを微調整し,異常検出に向けたタスク指向の表現を学習するためのLSFA法を提案する。
論文 参考訳(メタデータ) (2024-01-06T07:30:41Z) - CL-Flow:Strengthening the Normalizing Flows by Contrastive Learning for
Better Anomaly Detection [1.951082473090397]
コントラスト学習と2D-Flowを組み合わせた自己教師付き異常検出手法を提案する。
本手法は,主流の教師なし手法と比較して,検出精度が向上し,モデルパラメータが減少し,推論速度が向上することを示す。
BTADデータセットでは,MVTecADデータセットでは画像レベルのAUROCが99.6%,BTADデータセットでは画像レベルのAUROCが96.8%であった。
論文 参考訳(メタデータ) (2023-11-12T10:07:03Z) - Exploring the Relationship between Samples and Masks for Robust Defect
Localization [1.90365714903665]
本稿では,モデルプロセスなしで欠陥パターンを直接検出する一段階フレームワークを提案する。
欠陥の位置を示す可能性のある明示的な情報は、直接マッピングを学ぶことを避けるために意図的に除外される。
その結果,提案手法はF1-ScoreのSOTA法よりも2.9%高い値を示した。
論文 参考訳(メタデータ) (2023-06-19T06:41:19Z) - Training a Bidirectional GAN-based One-Class Classifier for Network
Intrusion Detection [8.158224495708978]
既存の生成逆数ネットワーク(GAN)は、主に実物から合成サンプルを作成するために使用される。
提案手法では,Bidirectional GAN (Bi-GAN) に基づく一級分類器として,訓練されたエンコーダ識別器を構築した。
実験結果から,提案手法はネットワーク侵入検出タスクにおいて有効であることが示唆された。
論文 参考訳(メタデータ) (2022-02-02T23:51:11Z) - Towards Reducing Labeling Cost in Deep Object Detection [61.010693873330446]
本稿では,検知器の不確実性と頑健性の両方を考慮した,アクティブラーニングのための統一的なフレームワークを提案する。
提案手法は, 確率分布のドリフトを抑えながら, 極めて確実な予測を擬似ラベル化することができる。
論文 参考訳(メタデータ) (2021-06-22T16:53:09Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
我々は、アウト・オブ・ディストリビューション(OOD)インプットと敵攻撃(AA)を検出する新しい手法であるDAINを導入する。
本手法は,ニューラルネットワークの内部動作を監視し,活性化分布の密度推定器を学習する。
当社のモデルは,特別なアクセラレータを必要とせずに,効率的な計算とデプロイが可能な単一のGPUでトレーニングすることが可能です。
論文 参考訳(メタデータ) (2021-05-30T22:07:13Z) - WSSOD: A New Pipeline for Weakly- and Semi-Supervised Object Detection [75.80075054706079]
弱機能および半教師付きオブジェクト検出フレームワーク(WSSOD)を提案する。
エージェント検出器は、まず関節データセット上でトレーニングされ、弱注釈画像上で擬似境界ボックスを予測するために使用される。
提案フレームワークはPASCAL-VOC と MSCOCO のベンチマークで顕著な性能を示し,完全教師付き環境で得られたものと同等の性能を達成している。
論文 参考訳(メタデータ) (2021-05-21T11:58:50Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z) - Regularized Cycle Consistent Generative Adversarial Network for Anomaly
Detection [5.457279006229213]
本稿では, ニューラルネットワークを逆向きに訓練し, 異常なサンプルをよりよく認識するRCGAN(Regularized Cycle Consistent Generative Adversarial Network)を提案する。
実世界のデータと合成データの両方に対する実験結果から,我々のモデルが過去の異常検出ベンチマークにおいて有意かつ一貫した改善をもたらすことが示された。
論文 参考訳(メタデータ) (2020-01-18T03:35:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。