論文の概要: LAST: Language Model Aware Speech Tokenization
- arxiv url: http://arxiv.org/abs/2409.03701v2
- Date: Tue, 10 Sep 2024 14:45:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-11 12:24:07.305396
- Title: LAST: Language Model Aware Speech Tokenization
- Title(参考訳): LAST:言語モデルが音声認識を意識する
- Authors: Arnon Turetzky, Yossi Adi,
- Abstract要約: 本稿では,事前学習されたテキストLMの目的を活かして,音声トークン化者の訓練を行う新しい手法を提案する。
本研究の目的は,事前学習した音声モデルから,より優れたクラスタリングを実現するための新機能空間への変換である。
- 参考スコア(独自算出の注目度): 24.185165710384997
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Speech tokenization serves as the foundation of speech language model (LM), enabling them to perform various tasks such as spoken language modeling, text-to-speech, speech-to-text, etc. Most speech tokenizers are trained independently of the LM training process, relying on separate acoustic models and quantization methods. Following such an approach may create a mismatch between the tokenization process and its usage afterward. In this study, we propose a novel approach to training a speech tokenizer by leveraging objectives from pre-trained textual LMs. We advocate for the integration of this objective into the process of learning discrete speech representations. Our aim is to transform features from a pre-trained speech model into a new feature space that enables better clustering for speech LMs. We empirically investigate the impact of various model design choices, including speech vocabulary size and text LM size. Our results demonstrate the proposed tokenization method outperforms the evaluated baselines considering both spoken language modeling and speech-to-text. More importantly, unlike prior work, the proposed method allows the utilization of a single pre-trained LM for processing both speech and text inputs, setting it apart from conventional tokenization approaches.
- Abstract(参考訳): 音声トークン化は、音声言語モデル(LM)の基礎として機能し、音声言語モデリング、テキスト音声、音声音声テキストなど様々なタスクを実行できる。
ほとんどの音声トークンは、別々の音響モデルと量子化法に依存して、LMトレーニングプロセスとは独立して訓練される。
このようなアプローチに従うと、トークン化プロセスとその使用方法のミスマッチが発生する可能性がある。
本研究では,事前学習されたテキストLMの目的を生かして,音声トークン化者の訓練を行う新しい手法を提案する。
我々は、この目的を個別の音声表現を学習するプロセスに統合することを提唱する。
本研究の目的は,事前学習した音声モデルから,より優れたクラスタリングを実現するための新機能空間への変換である。
音声語彙サイズやテキストLMサイズなど,様々なモデル設計選択の影響を実証的に検討する。
提案手法は,音声言語モデルと音声テキストの両方を考慮した評価ベースラインよりも優れていることを示す。
さらに,従来のトークン化手法とは違って,提案手法では,音声入力とテキスト入力の両処理に1つの事前学習されたLMを用いることが可能である。
関連論文リスト
- Recent Advances in Speech Language Models: A Survey [45.968078636811356]
音声言語モデル(SpeechLMs)は、テキストから変換することなく音声を生成するエンドツーエンドモデルである。
本稿では,近年のSpeechLM構築手法について概観する。
論文 参考訳(メタデータ) (2024-10-01T21:48:12Z) - Developing Instruction-Following Speech Language Model Without Speech Instruction-Tuning Data [84.01401439030265]
最近のエンドツーエンド言語モデル(SLM)は、大規模言語モデル(LLM)の機能に拡張されている。
音声とテキストのペアデータを生成するための,シンプルで効果的な自動処理手法を提案する。
本モデルでは,音声教育データを必要としない音声関連タスクの汎用性を示す。
論文 参考訳(メタデータ) (2024-09-30T07:01:21Z) - SpeechPrompt: Prompting Speech Language Models for Speech Processing Tasks [94.10497337235083]
我々はまず,音声処理分野における音声 LM の促進の可能性を探る。
音声処理タスクを音声単位生成タスクに再構成する。
提案手法は, 強い微調整法と比較して, 競争性能を向上できることを示す。
論文 参考訳(メタデータ) (2024-08-23T13:00:10Z) - dMel: Speech Tokenization made Simple [19.169460770473908]
メル-フィルターバンクチャネルを離散強度ビンに分割すると、単純な表現(dMel)が生成されることを示す。
本結果は,dMelが統合されたフレームワーク内の両方のタスクにおいて高い性能を実現する上で有効であることを示す。
論文 参考訳(メタデータ) (2024-07-22T17:51:53Z) - DeSTA: Enhancing Speech Language Models through Descriptive Speech-Text Alignment [82.86363991170546]
本稿では、音声キャプションを利用して音声とテキストのモダリティのギャップを埋める記述型音声テキストアライメント手法を提案する。
我々のモデルはDynamic-SUPERBベンチマークで優れた性能を示し、特に目に見えないタスクに一般化する。
これらの知見は、説明豊かな音声キャプションを組み込むことにより、指示追従型SLMを再構築する可能性を強調した。
論文 参考訳(メタデータ) (2024-06-27T03:52:35Z) - Instruction-Following Speech Recognition [21.591086644665197]
本稿では,命令追従音声認識を導入し,多様な自由形式のテキスト命令の理解と実行を行うリステン・アテンド・スペルモデルを訓練する。
注目すべきは、我々のモデルは、Librispeechでゼロから訓練され、大規模言語モデルや事前訓練された音声モジュールを必要とせずに、簡単な命令を解釈し、実行します。
論文 参考訳(メタデータ) (2023-09-18T14:59:10Z) - VATLM: Visual-Audio-Text Pre-Training with Unified Masked Prediction for
Speech Representation Learning [119.49605266839053]
VATLM (Visual-Audio-Text Language Model) を用いたクロスモーダル表現学習フレームワークを提案する。
提案したVATLMは、モダリティに依存しない情報をモデル化するために、統一されたバックボーンネットワークを使用する。
これら3つのモダリティを1つの共有セマンティック空間に統合するために、VATLMは統一トークンのマスク付き予測タスクで最適化される。
論文 参考訳(メタデータ) (2022-11-21T09:10:10Z) - Towards Language Modelling in the Speech Domain Using Sub-word
Linguistic Units [56.52704348773307]
音節や音素を含む言語単位に基づくLSTMに基づく新しい生成音声LMを提案する。
限られたデータセットでは、現代の生成モデルで要求されるものよりも桁違いに小さいので、我々のモデルはバブリング音声を近似する。
補助的なテキストLM,マルチタスク学習目標,補助的な調音特徴を用いた訓練の効果を示す。
論文 参考訳(メタデータ) (2021-10-31T22:48:30Z) - SPLAT: Speech-Language Joint Pre-Training for Spoken Language
Understanding [61.02342238771685]
音声理解には、入力音響信号を解析してその言語内容を理解し、予測するモデルが必要である。
大規模無注釈音声やテキストからリッチな表現を学習するために,様々な事前学習手法が提案されている。
音声と言語モジュールを協調的に事前学習するための,新しい半教師付き学習フレームワークであるSPLATを提案する。
論文 参考訳(メタデータ) (2020-10-05T19:29:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。