論文の概要: A Deep Generative Learning Approach for Two-stage Adaptive Robust Optimization
- arxiv url: http://arxiv.org/abs/2409.03731v1
- Date: Thu, 5 Sep 2024 17:42:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 19:43:43.704178
- Title: A Deep Generative Learning Approach for Two-stage Adaptive Robust Optimization
- Title(参考訳): 2段階適応ロバスト最適化のための深層生成学習手法
- Authors: Aron Brenner, Rahman Khorramfar, Jennifer Sun, Saurabh Amin,
- Abstract要約: 2段階の適応的ロバスト最適化は、不確実性が実現された後に行われる「待ち時間」のリコース決定のコストと、第1段階の決定のコストのバランスをとることを目的としている。
本稿では,多変量オートエンコーダを用いた2段階適応ロバスト最適化のための逆生成を行うカラム・アンド・制約生成アルゴリズムAGROを紹介する。
- 参考スコア(独自算出の注目度): 3.124884279860061
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Two-stage adaptive robust optimization is a powerful approach for planning under uncertainty that aims to balance costs of "here-and-now" first-stage decisions with those of "wait-and-see" recourse decisions made after uncertainty is realized. To embed robustness against uncertainty, modelers typically assume a simple polyhedral or ellipsoidal set over which contingencies may be realized. However, these simple uncertainty sets tend to yield highly conservative decision-making when uncertainties are high-dimensional. In this work, we introduce AGRO, a column-and-constraint generation algorithm that performs adversarial generation for two-stage adaptive robust optimization using a variational autoencoder. AGRO identifies realistic and cost-maximizing contingencies by optimizing over spherical uncertainty sets in a latent space using a projected gradient ascent approach that differentiates the optimal recourse cost with respect to the latent variable. To demonstrate the cost- and time-efficiency of our approach experimentally, we apply AGRO to an adaptive robust capacity expansion problem for a regional power system and show that AGRO is able to reduce costs by up to 7.8% and runtimes by up to 77% in comparison to the conventional column-and-constraint generation algorithm.
- Abstract(参考訳): 2段階適応型ロバスト最適化は、不確実性を実現した後の「待機と視」のリコース決定のコストと「現在」のファーストステージ決定のコストのバランスをとることを目的とした、不確実性の下での計画のための強力なアプローチである。
不確実性に対するロバストさを埋め込むために、モデラーは典型的に単純な多面体あるいは楕円体集合を仮定する。
しかし、これらの単純な不確実性集合は、不確実性が高次元であるときに非常に保守的な決定をもたらす傾向がある。
本稿では,多変量オートエンコーダを用いた2段階適応型ロバスト最適化のための逆生成を行うコラム・アンド・制約生成アルゴリズムAGROを紹介する。
AGROは、ラテント空間における球面不確実性集合を最適化し、ラテント変数に対する最適リコースコストを区別する射影勾配上昇アプローチを用いて、現実的でコストを最大化する一致を識別する。
提案手法のコスト・時間効率を実験的に実証するため,AGROを地域電力系統の適応的ロバスト容量拡張問題に適用し,従来のカラム・アンド・制約生成アルゴリズムと比較して最大7.8%,ランタイムを最大77%削減できることを示す。
関連論文リスト
- Know Where You're Uncertain When Planning with Multimodal Foundation Models: A Formal Framework [54.40508478482667]
認識と計画生成の不確実性を解消し、定量化し、緩和する包括的枠組みを提案する。
本稿では,知覚と意思決定の独特な性質に合わせた手法を提案する。
この不確実性分散フレームワークは, 変動率を最大40%削減し, タスク成功率をベースラインに比べて5%向上させることを示した。
論文 参考訳(メタデータ) (2024-11-03T17:32:00Z) - End-to-End Conformal Calibration for Optimization Under Uncertainty [32.844953018302874]
本稿では,条件最適化のための不確実性推定を学習するためのエンドツーエンドフレームワークを開発する。
さらに,部分凸ニューラルネットワークを用いた任意の凸不確実性集合の表現を提案する。
我々のアプローチは2段階最適化によって一貫して改善される。
論文 参考訳(メタデータ) (2024-09-30T17:38:27Z) - End-to-end Conditional Robust Optimization [6.363653898208231]
条件付きロバスト最適化(CRO)は、不確実な定量化と堅牢な最適化を組み合わせることで、高利得アプリケーションの安全性と信頼性を促進する。
本稿では,CROモデルの学習方法として,所定の決定の実証的リスクと,それをサポートする文脈不確実性セットの条件付きカバレッジの質の両方を考慮に入れた,新しいエンドツーエンドアプローチを提案する。
提案したトレーニングアルゴリズムは,従来の推定値を上回って,アプローチを最適化する決定を生成する。
論文 参考訳(メタデータ) (2024-03-07T17:16:59Z) - Double Duality: Variational Primal-Dual Policy Optimization for
Constrained Reinforcement Learning [132.7040981721302]
本研究では,訪問尺度の凸関数を最小化することを目的として,制約付き凸決定プロセス(MDP)について検討する。
制約付き凸MDPの設計アルゴリズムは、大きな状態空間を扱うなど、いくつかの課題に直面している。
論文 参考訳(メタデータ) (2024-02-16T16:35:18Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
モデルベース強化学習における累積報酬に対する不確実性を定量化する問題を考察する。
我々は、解が値の真後分散に収束する新しい不確実性ベルマン方程式(UBE)を提案する。
本稿では,リスク・サーキングとリスク・アバース・ポリシー最適化のいずれにも適用可能な汎用ポリシー最適化アルゴリズムQ-Uncertainty Soft Actor-Critic (QU-SAC)を導入する。
論文 参考訳(メタデータ) (2023-12-07T15:55:58Z) - Federated Distributionally Robust Optimization with Non-Convex
Objectives: Algorithm and Analysis [24.64654924173679]
Asynchronous Single-looP alternatIve gRadient projEction という非同期分散アルゴリズムを提案する。
新しい不確実性集合、すなわち制約付きD-ノルムの不確実性集合は、以前の分布を利用し、強靭性の度合いを柔軟に制御するために開発される。
実世界のデータセットに関する実証研究は、提案手法が高速収束を達成できるだけでなく、悪意のある攻撃だけでなく、データに対する堅牢性も維持できることを示した。
論文 参考訳(メタデータ) (2023-07-25T01:56:57Z) - Distributed Distributionally Robust Optimization with Non-Convex
Objectives [24.64654924173679]
Asynchronous Single-looP alternatIve gRadient projEction という非同期分散アルゴリズムを提案する。
新しい不確実性集合、すなわち制約付きD-ノルムの不確実性集合は、以前の分布を利用し、強靭性の度合いを柔軟に制御するために開発される。
実世界のデータセットに関する実証研究は、提案手法が高速収束を達成できるだけでなく、悪意のある攻撃だけでなく、データに対する堅牢性も維持できることを示した。
論文 参考訳(メタデータ) (2022-10-14T07:39:13Z) - Algorithm for Constrained Markov Decision Process with Linear
Convergence [55.41644538483948]
エージェントは、そのコストに対する複数の制約により、期待される累積割引報酬を最大化することを目的としている。
エントロピー正規化ポリシーとベイダの二重化という2つの要素を統合した新しい双対アプローチが提案されている。
提案手法は(線形速度で)大域的最適値に収束することが示されている。
論文 参考訳(メタデータ) (2022-06-03T16:26:38Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
我々は、最悪のケース分布を特徴付けるために神経生成モデルを使うことを議論する。
このアプローチは多くの実装と最適化の課題をもたらします。
提案されたアプローチは、同等のベースラインよりも堅牢なモデルを生み出す。
論文 参考訳(メタデータ) (2021-03-18T14:26:26Z) - Online Optimization and Ambiguity-based Learning of Distributionally Uncertain Dynamic Systems [1.6709415233613623]
本稿では,分散的に不確実な力学系のクラスを対象とする最適化問題 (P) に対して,データ駆動型オンラインソリューションを構築するための新しい手法を提案する。
導入されたフレームワークは、パラメータ化された制御依存のあいまいさセットを通じて、分散システムの不確実性の同時学習を可能にする。
また、Nesterovの高速化段階アルゴリズムのオンライン版を導入し、その性能を分析して、分散性理論を用いてこの問題のクラスを解く。
論文 参考訳(メタデータ) (2021-02-18T01:49:06Z) - Robust, Accurate Stochastic Optimization for Variational Inference [68.83746081733464]
また, 共通最適化手法は, 問題が適度に大きい場合, 変分近似の精度が低下することを示した。
これらの結果から,基礎となるアルゴリズムをマルコフ連鎖の生成とみなして,より堅牢で正確な最適化フレームワークを開発する。
論文 参考訳(メタデータ) (2020-09-01T19:12:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。