論文の概要: Online Optimization and Ambiguity-based Learning of Distributionally Uncertain Dynamic Systems
- arxiv url: http://arxiv.org/abs/2102.09111v2
- Date: Sun, 21 Jul 2024 18:11:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 20:20:10.340245
- Title: Online Optimization and Ambiguity-based Learning of Distributionally Uncertain Dynamic Systems
- Title(参考訳): 分布不確実な力学系のオンライン最適化とあいまいさに基づく学習
- Authors: Dan Li, Dariush Fooladivanda, Sonia Martinez,
- Abstract要約: 本稿では,分散的に不確実な力学系のクラスを対象とする最適化問題 (P) に対して,データ駆動型オンラインソリューションを構築するための新しい手法を提案する。
導入されたフレームワークは、パラメータ化された制御依存のあいまいさセットを通じて、分散システムの不確実性の同時学習を可能にする。
また、Nesterovの高速化段階アルゴリズムのオンライン版を導入し、その性能を分析して、分散性理論を用いてこの問題のクラスを解く。
- 参考スコア(独自算出の注目度): 1.6709415233613623
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes a novel approach to construct data-driven online solutions to optimization problems (P) subject to a class of distributionally uncertain dynamical systems. The introduced framework allows for the simultaneous learning of distributional system uncertainty via a parameterized, control-dependent ambiguity set using a finite historical data set, and its use to make online decisions with probabilistic regret function bounds. Leveraging the merits of Machine Learning, the main technical approach relies on the theory of Distributional Robust Optimization (DRO), to hedge against uncertainty and provide less conservative results than standard Robust Optimization approaches. Starting from recent results that describe ambiguity sets via parameterized, and control-dependent empirical distributions as well as ambiguity radii, we first present a tractable reformulation of the corresponding optimization problem while maintaining the probabilistic guarantees. We then specialize these problems to the cases of 1) optimal one-stage control of distributionally uncertain nonlinear systems, and 2) resource allocation under distributional uncertainty. A novelty of this work is that it extends DRO to online optimization problems subject to a distributionally uncertain dynamical system constraint, handled via a control-dependent ambiguity set that leads to online-tractable optimization with probabilistic guarantees on regret bounds. Further, we introduce an online version of Nesterov's accelerated-gradient algorithm, and analyze its performance to solve this class of problems via dissipativity theory.
- Abstract(参考訳): 本稿では,分散的に不確実な力学系のクラスを対象とする最適化問題 (P) に対して,データ駆動型オンラインソリューションを構築するための新しい手法を提案する。
導入されたフレームワークは、有限履歴データセットを用いてパラメータ化された制御依存曖昧性セットを通じて分布系の不確かさを同時学習し、確率的後悔関数境界でオンライン決定を行う。
機械学習の利点を生かして、主要な技術的アプローチは分散ロバスト最適化(DRO)の理論に依存し、不確実性に対処し、標準的なロバスト最適化アプローチよりも保守的な結果を提供する。
パラメータ化および制御に依存した経験分布とあいまいさラディウスを用いたあいまいさ集合を記述する最近の結果から、確率的保証を維持しつつ、対応する最適化問題のトラクタブルな再構成を最初に提示する。
次にこれらの問題を事例に専門化する。
1)分布不確実な非線形系の最適一段階制御、及び
2【配当の不確実性による資源配分】
この研究の斬新な点は、DROを分散的に不確実な力学系の制約を受けるオンライン最適化問題に拡張し、制御依存曖昧性セットによって処理し、後悔境界に対する確率的保証を伴うオンライントラクタブルな最適化へと導くことである。
さらに,Nesterovの高速化段階アルゴリズムのオンライン版を導入し,その性能を解析して,分散性理論を用いてこの問題のクラスを解く。
関連論文リスト
- A Deep Generative Learning Approach for Two-stage Adaptive Robust Optimization [3.124884279860061]
本稿では,2段階適応型ロバスト最適化のための逆生成を行う解アルゴリズムAGROを紹介する。
AGROは、同時に敵対的かつ現実的な高次元の一致を生成する。
我々は、AGROが標準的なカラム・アンド・制約アルゴリズムを最大1.8%のプロダクション・ディストリビューション計画、最大11.6%の電力系統拡張で上回っていることを示す。
論文 参考訳(メタデータ) (2024-09-05T17:42:19Z) - Two-Stage ML-Guided Decision Rules for Sequential Decision Making under Uncertainty [55.06411438416805]
SDMU (Sequential Decision Making Under Uncertainty) は、エネルギー、金融、サプライチェーンといった多くの領域において、ユビキタスである。
いくつかのSDMUは、自然にマルチステージ問題(MSP)としてモデル化されているが、結果として得られる最適化は、計算の観点からは明らかに困難である。
本稿では,2段階の一般決定規則(TS-GDR)を導入し,線形関数を超えて政策空間を一般化する手法を提案する。
TS-GDRの有効性は、TS-LDR(Two-Stage Deep Decision Rules)と呼ばれるディープリカレントニューラルネットワークを用いたインスタンス化によって実証される。
論文 参考訳(メタデータ) (2024-05-23T18:19:47Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
機械学習における予測-Then-Forecast(PtO)パラダイムは、下流の意思決定品質を最大化することを目的としている。
本稿では,PtO法を拡張して,OWA(Nondifferentiable Ordered Weighted Averaging)の目的を最適化する。
この結果から,不確実性の下でのOWA関数の最適化とパラメトリック予測を効果的に統合できることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T16:33:35Z) - Federated Distributionally Robust Optimization with Non-Convex
Objectives: Algorithm and Analysis [24.64654924173679]
Asynchronous Single-looP alternatIve gRadient projEction という非同期分散アルゴリズムを提案する。
新しい不確実性集合、すなわち制約付きD-ノルムの不確実性集合は、以前の分布を利用し、強靭性の度合いを柔軟に制御するために開発される。
実世界のデータセットに関する実証研究は、提案手法が高速収束を達成できるだけでなく、悪意のある攻撃だけでなく、データに対する堅牢性も維持できることを示した。
論文 参考訳(メタデータ) (2023-07-25T01:56:57Z) - Non-Gaussian Uncertainty Minimization Based Control of Stochastic
Nonlinear Robotic Systems [9.088960941718]
我々は、不確実性や乱れによる名目状態軌跡からのシステムの状態のずれを最小限に抑える状態フィードバックコントローラを設計する。
我々はモーメントと特徴関数を用いて、ロボットシステムの非線形運動モデル全体にわたって不確実性を伝播する。
論文 参考訳(メタデータ) (2023-03-02T23:31:32Z) - Online Learning under Budget and ROI Constraints via Weak Adaptivity [57.097119428915796]
制約付きオンライン学習問題に対する既存の原始双対アルゴリズムは、2つの基本的な仮定に依存している。
このような仮定は、標準の原始双対テンプレートを弱適応的後悔最小化器で与えることによって、どのように回避できるのかを示す。
上記の2つの前提が満たされていない場合に保証される、世界の最高の保証を証明します。
論文 参考訳(メタデータ) (2023-02-02T16:30:33Z) - Distributed Distributionally Robust Optimization with Non-Convex
Objectives [24.64654924173679]
Asynchronous Single-looP alternatIve gRadient projEction という非同期分散アルゴリズムを提案する。
新しい不確実性集合、すなわち制約付きD-ノルムの不確実性集合は、以前の分布を利用し、強靭性の度合いを柔軟に制御するために開発される。
実世界のデータセットに関する実証研究は、提案手法が高速収束を達成できるだけでなく、悪意のある攻撃だけでなく、データに対する堅牢性も維持できることを示した。
論文 参考訳(メタデータ) (2022-10-14T07:39:13Z) - Distributed Online Non-convex Optimization with Composite Regret [31.53784277195043]
本稿では,分散オンライン一般損失に対する新たなネットワーク後悔を伴う,新たな複合後悔を提案する。
我々の知る限り、オンラインの非線形学習における最初の後悔である。
論文 参考訳(メタデータ) (2022-09-21T04:16:33Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
ガウス過程(GP)のような確率モデルは、制御設計に続く使用のためのデータから未知の動的システムを学ぶための強力なツールです。
本稿では、確率的安定性マージンに関して堅牢なコントローラを生成する線形化GPダイナミクスのための新しいコントローラ合成について述べる。
論文 参考訳(メタデータ) (2021-05-17T08:36:18Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
我々は、最悪のケース分布を特徴付けるために神経生成モデルを使うことを議論する。
このアプローチは多くの実装と最適化の課題をもたらします。
提案されたアプローチは、同等のベースラインよりも堅牢なモデルを生み出す。
論文 参考訳(メタデータ) (2021-03-18T14:26:26Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
本稿では,自由空間光学(FSO)通信におけるチャネルフェージング効果の緩和のための資源配分の一般的な問題について検討する。
本フレームワークでは,FSO資源割り当て問題を解決する2つのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-27T17:38:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。