論文の概要: A Deep Generative Learning Approach for Two-stage Adaptive Robust Optimization
- arxiv url: http://arxiv.org/abs/2409.03731v2
- Date: Thu, 3 Oct 2024 16:09:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 23:11:54.844648
- Title: A Deep Generative Learning Approach for Two-stage Adaptive Robust Optimization
- Title(参考訳): 2段階適応ロバスト最適化のための深層生成学習手法
- Authors: Aron Brenner, Rahman Khorramfar, Jennifer Sun, Saurabh Amin,
- Abstract要約: 本稿では,2段階適応型ロバスト最適化のための逆生成を行う解アルゴリズムAGROを紹介する。
AGROは、同時に敵対的かつ現実的な高次元の一致を生成する。
我々は、AGROが標準的なカラム・アンド・制約アルゴリズムを最大1.8%のプロダクション・ディストリビューション計画、最大11.6%の電力系統拡張で上回っていることを示す。
- 参考スコア(独自算出の注目度): 3.124884279860061
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Two-stage adaptive robust optimization (ARO) is a powerful approach for planning under uncertainty, balancing first-stage decisions with recourse decisions made after uncertainty is realized. To account for uncertainty, modelers typically define a simple uncertainty set over which potential outcomes are considered. However, classical methods for defining these sets unintentionally capture a wide range of unrealistic outcomes, resulting in overly-conservative and costly planning in anticipation of unlikely contingencies. In this work, we introduce AGRO, a solution algorithm that performs adversarial generation for two-stage adaptive robust optimization using a variational autoencoder. AGRO generates high-dimensional contingencies that are simultaneously adversarial and realistic, improving the robustness of first-stage decisions at a lower planning cost than standard methods. To ensure generated contingencies lie in high-density regions of the uncertainty distribution, AGRO defines a tight uncertainty set as the image of "latent" uncertainty sets under the VAE decoding transformation. Projected gradient ascent is then used to maximize recourse costs over the latent uncertainty sets by leveraging differentiable optimization methods. We demonstrate the cost-efficiency of AGRO by applying it to both a synthetic production-distribution problem and a real-world power system expansion setting. We show that AGRO outperforms the standard column-and-constraint algorithm by up to 1.8% in production-distribution planning and up to 11.6% in power system expansion.
- Abstract(参考訳): 2段階適応ロバスト最適化(ARO)は、不確実性の下で計画する上で強力なアプローチであり、不確実性が実現された後の最初の段階決定とリコメンデーション決定とのバランスをとる。
不確実性を考慮するために、モデラーは通常、潜在的な結果が考慮される単純な不確実性集合を定義する。
しかし、これらの集合を定義する古典的な手法は意図せず広範囲の非現実的な結果を取り込んでおり、その結果、予期せぬ事態を予想して過度に保守的かつコスト的に計画される。
本稿では,変分オートエンコーダを用いた2段階適応型ロバスト最適化のための逆生成を行う解アルゴリズムAGROを紹介する。
AGROは、同時に敵対的かつ現実的な高次元の一致を生成し、標準手法よりも低い計画コストで第一段階決定の堅牢性を向上させる。
不確実性分布の高密度領域に発生した一致を確実にするために、AGROは、VAE復号変換の下での「相対的」不確実性集合の像として、厳密な不確実性集合を定義する。
射影勾配上昇は、微分可能な最適化手法を利用することで、潜在不確実性集合上のレコースコストを最大化するために使用される。
我々は、AGROのコスト効率を合成生産分配問題と実世界の電力系統拡張設定の両方に適用することによって実証する。
我々は、AGROが標準的なカラム・アンド・制約アルゴリズムを最大1.8%のプロダクション・ディストリビューション計画、最大11.6%の電力系統拡張で上回っていることを示す。
関連論文リスト
- Know Where You're Uncertain When Planning with Multimodal Foundation Models: A Formal Framework [54.40508478482667]
認識と計画生成の不確実性を解消し、定量化し、緩和する包括的枠組みを提案する。
本稿では,知覚と意思決定の独特な性質に合わせた手法を提案する。
この不確実性分散フレームワークは, 変動率を最大40%削減し, タスク成功率をベースラインに比べて5%向上させることを示した。
論文 参考訳(メタデータ) (2024-11-03T17:32:00Z) - End-to-End Conformal Calibration for Optimization Under Uncertainty [32.844953018302874]
本稿では,条件最適化のための不確実性推定を学習するためのエンドツーエンドフレームワークを開発する。
さらに,部分凸ニューラルネットワークを用いた任意の凸不確実性集合の表現を提案する。
我々のアプローチは2段階最適化によって一貫して改善される。
論文 参考訳(メタデータ) (2024-09-30T17:38:27Z) - End-to-end Conditional Robust Optimization [6.363653898208231]
条件付きロバスト最適化(CRO)は、不確実な定量化と堅牢な最適化を組み合わせることで、高利得アプリケーションの安全性と信頼性を促進する。
本稿では,CROモデルの学習方法として,所定の決定の実証的リスクと,それをサポートする文脈不確実性セットの条件付きカバレッジの質の両方を考慮に入れた,新しいエンドツーエンドアプローチを提案する。
提案したトレーニングアルゴリズムは,従来の推定値を上回って,アプローチを最適化する決定を生成する。
論文 参考訳(メタデータ) (2024-03-07T17:16:59Z) - Double Duality: Variational Primal-Dual Policy Optimization for
Constrained Reinforcement Learning [132.7040981721302]
本研究では,訪問尺度の凸関数を最小化することを目的として,制約付き凸決定プロセス(MDP)について検討する。
制約付き凸MDPの設計アルゴリズムは、大きな状態空間を扱うなど、いくつかの課題に直面している。
論文 参考訳(メタデータ) (2024-02-16T16:35:18Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
モデルベース強化学習における累積報酬に対する不確実性を定量化する問題を考察する。
我々は、解が値の真後分散に収束する新しい不確実性ベルマン方程式(UBE)を提案する。
本稿では,リスク・サーキングとリスク・アバース・ポリシー最適化のいずれにも適用可能な汎用ポリシー最適化アルゴリズムQ-Uncertainty Soft Actor-Critic (QU-SAC)を導入する。
論文 参考訳(メタデータ) (2023-12-07T15:55:58Z) - Federated Distributionally Robust Optimization with Non-Convex
Objectives: Algorithm and Analysis [24.64654924173679]
Asynchronous Single-looP alternatIve gRadient projEction という非同期分散アルゴリズムを提案する。
新しい不確実性集合、すなわち制約付きD-ノルムの不確実性集合は、以前の分布を利用し、強靭性の度合いを柔軟に制御するために開発される。
実世界のデータセットに関する実証研究は、提案手法が高速収束を達成できるだけでなく、悪意のある攻撃だけでなく、データに対する堅牢性も維持できることを示した。
論文 参考訳(メタデータ) (2023-07-25T01:56:57Z) - Distributed Distributionally Robust Optimization with Non-Convex
Objectives [24.64654924173679]
Asynchronous Single-looP alternatIve gRadient projEction という非同期分散アルゴリズムを提案する。
新しい不確実性集合、すなわち制約付きD-ノルムの不確実性集合は、以前の分布を利用し、強靭性の度合いを柔軟に制御するために開発される。
実世界のデータセットに関する実証研究は、提案手法が高速収束を達成できるだけでなく、悪意のある攻撃だけでなく、データに対する堅牢性も維持できることを示した。
論文 参考訳(メタデータ) (2022-10-14T07:39:13Z) - Algorithm for Constrained Markov Decision Process with Linear
Convergence [55.41644538483948]
エージェントは、そのコストに対する複数の制約により、期待される累積割引報酬を最大化することを目的としている。
エントロピー正規化ポリシーとベイダの二重化という2つの要素を統合した新しい双対アプローチが提案されている。
提案手法は(線形速度で)大域的最適値に収束することが示されている。
論文 参考訳(メタデータ) (2022-06-03T16:26:38Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
我々は、最悪のケース分布を特徴付けるために神経生成モデルを使うことを議論する。
このアプローチは多くの実装と最適化の課題をもたらします。
提案されたアプローチは、同等のベースラインよりも堅牢なモデルを生み出す。
論文 参考訳(メタデータ) (2021-03-18T14:26:26Z) - Online Optimization and Ambiguity-based Learning of Distributionally Uncertain Dynamic Systems [1.6709415233613623]
本稿では,分散的に不確実な力学系のクラスを対象とする最適化問題 (P) に対して,データ駆動型オンラインソリューションを構築するための新しい手法を提案する。
導入されたフレームワークは、パラメータ化された制御依存のあいまいさセットを通じて、分散システムの不確実性の同時学習を可能にする。
また、Nesterovの高速化段階アルゴリズムのオンライン版を導入し、その性能を分析して、分散性理論を用いてこの問題のクラスを解く。
論文 参考訳(メタデータ) (2021-02-18T01:49:06Z) - Robust, Accurate Stochastic Optimization for Variational Inference [68.83746081733464]
また, 共通最適化手法は, 問題が適度に大きい場合, 変分近似の精度が低下することを示した。
これらの結果から,基礎となるアルゴリズムをマルコフ連鎖の生成とみなして,より堅牢で正確な最適化フレームワークを開発する。
論文 参考訳(メタデータ) (2020-09-01T19:12:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。