論文の概要: Rethinking Deep Learning: Propagating Information in Neural Networks without Backpropagation and Statistical Optimization
- arxiv url: http://arxiv.org/abs/2409.03760v1
- Date: Sun, 18 Aug 2024 09:22:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-15 05:46:11.479139
- Title: Rethinking Deep Learning: Propagating Information in Neural Networks without Backpropagation and Statistical Optimization
- Title(参考訳): ディープラーニングを再考する:バックプロパゲーションと統計的最適化のないニューラルネットワークにおける情報伝達
- Authors: Kei Itoh,
- Abstract要約: 本研究では,構造を模倣するニューラルネットワークとして,情報伝達機能とNNの応用の可能性について論じる。
本研究では,段差関数をアクティベーション関数として使用し,0~15層を隠蔽し,重み更新を行わない完全連結層からなるNNSアーキテクチャを提案する。
ラベル毎のトレーニングデータの平均出力ベクトルとテストデータの出力ベクトルをベクトル類似度に基づいて比較して精度を算出する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Developing strong AI signifies the arrival of technological singularity, contributing greatly to advancing human civilization and resolving social issues. Neural networks (NNs) and deep learning, which utilize NNs, are expected to lead to strong AI due to their biological neural system-mimicking structures. However, the statistical weight optimization techniques commonly used, such as error backpropagation and loss functions, may hinder the mimicry of neural systems. This study discusses the information propagation capabilities and potential practical applications of NNs as neural system mimicking structures by solving the handwritten character recognition problem in the Modified National Institute of Standards and Technology (MNIST) database without using statistical weight optimization techniques like error backpropagation. In this study, the NNs architecture comprises fully connected layers using step functions as activation functions, with 0-15 hidden layers, and no weight updates. The accuracy is calculated by comparing the average output vectors of the training data for each label with the output vectors of the test data, based on vector similarity. The results showed that the maximum accuracy achieved is around 80%. This indicates that NNs can propagate information correctly without using statistical weight optimization. Additionally, the accuracy decreased with an increasing number of hidden layers. This is attributed to the decrease in the variance of the output vectors as the number of hidden layers increases, suggesting that the output data becomes smooth. This study's NNs and accuracy calculation methods are simple and have room for various improvements. Moreover, creating a feedforward NNs that repeatedly cycles through 'input -> processing -> output -> environmental response -> input -> ...' could pave the way for practical software applications.
- Abstract(参考訳): 強力なAIを開発することは、技術的特異点の到来を意味し、人類の文明の進化と社会問題の解決に大きく貢献する。
NN(Neural Network)とNN(Deep Learning)は、その生物学的ニューラルネットワークミミック構造のため、強力なAIにつながることが期待されている。
しかし、誤差のバックプロパゲーションや損失関数などの統計量最適化技術は、ニューラルネットワークの模倣を妨げる可能性がある。
本研究は,修正国立標準技術研究所(MNIST)データベースにおける手書き文字認識問題を,誤差のバックプロパゲーションのような統計的重み最適化手法を使わずに解くことで,構造を模倣するニューラルネットワークとしてのNNの情報伝達機能と潜在的実用性について考察する。
本研究では,段差関数をアクティベーション関数とし,0~15層を隠蔽し,重み更新を行わない完全連結層からなるNNsアーキテクチャを提案する。
ラベル毎のトレーニングデータの平均出力ベクトルとテストデータの出力ベクトルをベクトル類似度に基づいて比較して精度を算出する。
その結果,最大精度は約80%であった。
このことは、NNが統計量最適化を使わずに情報を正しく伝播できることを示している。
さらに,隠蔽層の増加に伴い精度が低下した。
これは、隠れた層の数が増えるにつれて出力ベクトルのばらつきが減少し、出力データが滑らかになることに起因する。
本研究のNNと精度計算法は単純で,様々な改善の余地がある。
さらに,「インプット -> 処理 -> 出力 -> 環境応答 -> 入力 -> 入力 -> 」を繰り返し循環するフィードフォワードNNを作成することで,実用的なソフトウェアアプリケーションを実現することができる。
関連論文リスト
- An Investigation on Machine Learning Predictive Accuracy Improvement and Uncertainty Reduction using VAE-based Data Augmentation [2.517043342442487]
深層生成学習は、特定のMLモデルを使用して、既存のデータの基盤となる分布を学習し、実際のデータに似た合成サンプルを生成する。
本研究では,変分オートエンコーダ(VAE)を用いた深部生成モデルを用いて,データ拡張の有効性を評価することを目的とする。
本研究では,拡張データを用いてトレーニングしたディープニューラルネットワーク(DNN)モデルの予測において,データ拡張が精度の向上につながるかどうかを検討した。
論文 参考訳(メタデータ) (2024-10-24T18:15:48Z) - SGD method for entropy error function with smoothing l0 regularization for neural networks [3.108634881604788]
エントロピー誤差関数はニューラルネットワークで広く使われている。
本稿では,フィードフォワードニューラルネットワークの規則化を円滑に行うエントロピー関数を提案する。
ニューラルネットワークを効果的に学習し、より正確な予測を可能にするため、私たちの仕事は新しくなっています。
論文 参考訳(メタデータ) (2024-05-28T19:54:26Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
ニューラルネットワークの予測は、アウト・オブ・ディストリビューション(OOD)入力に直面した場合、予測不可能で過信される傾向がある。
我々は、入力データがOODになるにつれて、ニューラルネットワークの予測が一定値に向かう傾向があることを観察する。
我々は、OOD入力の存在下でリスクに敏感な意思決定を可能にするために、私たちの洞察を実際に活用する方法を示します。
論文 参考訳(メタデータ) (2023-10-02T03:25:32Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Desire Backpropagation: A Lightweight Training Algorithm for Multi-Layer
Spiking Neural Networks based on Spike-Timing-Dependent Plasticity [13.384228628766236]
スパイキングニューラルネットワーク(SNN)は、従来の人工ニューラルネットワークの代替となる。
本研究は,隠されたニューロンを含むすべてのニューロンの所望のスパイク活性を導出する方法である欲求バックプロパゲーションを提示する。
我々はMNISTとFashion-MNISTを分類するために3層ネットワークを訓練し、それぞれ98.41%と87.56%の精度に達した。
論文 参考訳(メタデータ) (2022-11-10T08:32:13Z) - DNN Training Acceleration via Exploring GPGPU Friendly Sparsity [16.406482603838157]
本稿では、従来のランダムなニューロンやシナプスのドロップアウトを、通常のオンラインの行ベースもしくはタイルベースのドロップアウトパターンに置き換える近似ランダムドロップアウトを提案する。
次に,SGDに基づく探索アルゴリズムを開発し,行ベースあるいはタイルベースのドロップアウトパターンの分布を生成し,潜在的な精度損失を補う。
また,入力特徴図をその感度に基づいて動的にドロップアウトし,前向きおよび後向きのトレーニングアクセラレーションを実現するための感度対応ドロップアウト手法を提案する。
論文 参考訳(メタデータ) (2022-03-11T01:32:03Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
スパイキングニューラルネットワーク(英: Spiking Neural Network、SNN)は、ニューロモルフィックハードウェア上でエネルギー効率の高い実装を可能にする脳にインスパイアされたモデルである。
既存のほとんどの手法は、人工ニューラルネットワークのバックプロパゲーションフレームワークとフィードフォワードアーキテクチャを模倣している。
本稿では,フォワード計算の正逆性に依存しない新しいトレーニング手法を提案する。
論文 参考訳(メタデータ) (2021-09-29T07:46:54Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN)は、そのパラメータにCanonical/Polyadic分解を課すテンソルベースの非線形学習モデルである。
まず、入力をマルチリニアアレイとして扱い、ベクトル化の必要性を回避し、すべてのデータ次元に沿って構造情報を十分に活用することができる。
Rank-R FNNの普遍的な近似と学習性の特性を確立し、実世界のハイパースペクトルデータセットのパフォーマンスを検証する。
論文 参考訳(メタデータ) (2021-04-11T16:37:32Z) - A Novel Neural Network Training Framework with Data Assimilation [2.948167339160823]
勾配計算を避けるため,データ同化に基づく勾配なし学習フレームワークを提案する。
その結果,提案手法は勾配法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2020-10-06T11:12:23Z) - RIFLE: Backpropagation in Depth for Deep Transfer Learning through
Re-Initializing the Fully-connected LayEr [60.07531696857743]
事前訓練されたモデルを用いたディープ畳み込みニューラルネットワーク(CNN)の微調整は、より大きなデータセットから学習した知識をターゲットタスクに転送するのに役立つ。
転送学習環境におけるバックプロパゲーションを深める戦略であるRIFLEを提案する。
RIFLEは、深いCNN層の重み付けに意味のあるアップデートをもたらし、低レベルの機能学習を改善する。
論文 参考訳(メタデータ) (2020-07-07T11:27:43Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。