SEAL: Suite for Evaluating API-use of LLMs
- URL: http://arxiv.org/abs/2409.15523v1
- Date: Mon, 23 Sep 2024 20:16:49 GMT
- Title: SEAL: Suite for Evaluating API-use of LLMs
- Authors: Woojeong Kim, Ashish Jagmohan, Aditya Vempaty,
- Abstract summary: SEAL is an end-to-end testbed designed to evaluate large language models in real-world API usage.
It standardizes existing benchmarks, integrates an agent system for testing API retrieval and planning, and addresses the instability of real-time APIs.
- Score: 1.2528321519119252
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have limitations in handling tasks that require real-time access to external APIs. While several benchmarks like ToolBench and APIGen have been developed to assess LLMs' API-use capabilities, they often suffer from issues such as lack of generalizability, limited multi-step reasoning coverage, and instability due to real-time API fluctuations. In this paper, we introduce SEAL, an end-to-end testbed designed to evaluate LLMs in real-world API usage. SEAL standardizes existing benchmarks, integrates an agent system for testing API retrieval and planning, and addresses the instability of real-time APIs by introducing a GPT-4-powered API simulator with caching for deterministic evaluations. Our testbed provides a comprehensive evaluation pipeline that covers API retrieval, API calls, and final responses, offering a reliable framework for structured performance comparison in diverse real-world scenarios. SEAL is publicly available, with ongoing updates for new benchmarks.
Related papers
- A Multi-Agent Approach for REST API Testing with Semantic Graphs and LLM-Driven Inputs [46.65963514391019]
We present AutoRestTest, the first black-box framework to adopt a dependency-embedded multi-agent approach for REST API testing.
We integrate Multi-Agent Reinforcement Learning (MARL) with a Semantic Property Dependency Graph (SPDG) and Large Language Models (LLMs)
Our approach treats REST API testing as a separable problem, where four agents -- API, dependency, parameter, and value -- collaborate to optimize API exploration.
arXiv Detail & Related papers (2024-11-11T16:20:27Z) - AutoFeedback: An LLM-based Framework for Efficient and Accurate API Request Generation [16.590226868986296]
AutoFeedback is a framework for efficient and accurate API request generation.
It implements two feedback loops during the process of generating API requests by the Large Language Models.
It achieves an accuracy of 100.00% on a real-world API dataset and reduces the cost of interaction with GPT-3.5 Turbo by 23.44%, and GPT-4 Turbo by 11.85%.
arXiv Detail & Related papers (2024-10-09T14:38:28Z) - A Systematic Evaluation of Large Code Models in API Suggestion: When, Which, and How [53.65636914757381]
API suggestion is a critical task in modern software development.
Recent advancements in large code models (LCMs) have shown promise in the API suggestion task.
arXiv Detail & Related papers (2024-09-20T03:12:35Z) - NESTFUL: A Benchmark for Evaluating LLMs on Nested Sequences of API Calls [18.831512738668792]
We present NESTFUL, a benchmark to evaluate large language models (LLMs) on nested sequences of API calls.
Our results show that most models do not perform well on nested APIs in NESTFUL as compared to their performance on the simpler problem settings available in existing benchmarks.
arXiv Detail & Related papers (2024-09-04T17:53:24Z) - FANTAstic SEquences and Where to Find Them: Faithful and Efficient API Call Generation through State-tracked Constrained Decoding and Reranking [57.53742155914176]
API call generation is the cornerstone of large language models' tool-using ability.
Existing supervised and in-context learning approaches suffer from high training costs, poor data efficiency, and generated API calls that can be unfaithful to the API documentation and the user's request.
We propose an output-side optimization approach called FANTASE to address these limitations.
arXiv Detail & Related papers (2024-07-18T23:44:02Z) - ShortcutsBench: A Large-Scale Real-world Benchmark for API-based Agents [7.166156709980112]
We introduce textscShortcutsBench, a large-scale benchmark for the comprehensive evaluation of API-based agents.
textscShortcutsBench includes a wealth of real APIs from Apple Inc.'s operating systems.
Our evaluation reveals significant limitations in handling complex queries related to API selection, parameter filling, and requesting necessary information from systems and users.
arXiv Detail & Related papers (2024-06-28T08:45:02Z) - A Solution-based LLM API-using Methodology for Academic Information Seeking [49.096714812902576]
SoAy is a solution-based LLM API-using methodology for academic information seeking.
It uses code with a solution as the reasoning method, where a solution is a pre-constructed API calling sequence.
Results show a 34.58-75.99% performance improvement compared to state-of-the-art LLM API-based baselines.
arXiv Detail & Related papers (2024-05-24T02:44:14Z) - StableToolBench: Towards Stable Large-Scale Benchmarking on Tool Learning of Large Language Models [74.88844320554284]
We introduce StableToolBench, a benchmark evolving from ToolBench.
The virtual API server contains a caching system and API simulators which are complementary to alleviate the change in API status.
The stable evaluation system designs solvable pass and win rates using GPT-4 as the automatic evaluator to eliminate the randomness during evaluation.
arXiv Detail & Related papers (2024-03-12T14:57:40Z) - ToolLLM: Facilitating Large Language Models to Master 16000+ Real-world
APIs [104.37772295581088]
Open-source large language models (LLMs), e.g., LLaMA, remain significantly limited in tool-use capabilities.
We introduce ToolLLM, a general tool-usetuning encompassing data construction, model training, and evaluation.
We first present ToolBench, an instruction-tuning framework for tool use, which is constructed automatically using ChatGPT.
arXiv Detail & Related papers (2023-07-31T15:56:53Z) - Evaluating Embedding APIs for Information Retrieval [51.24236853841468]
We evaluate the capabilities of existing semantic embedding APIs on domain generalization and multilingual retrieval.
We find that re-ranking BM25 results using the APIs is a budget-friendly approach and is most effective in English.
For non-English retrieval, re-ranking still improves the results, but a hybrid model with BM25 works best, albeit at a higher cost.
arXiv Detail & Related papers (2023-05-10T16:40:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.