CADet: Fully Self-Supervised Out-Of-Distribution Detection With
Contrastive Learning
- URL: http://arxiv.org/abs/2210.01742v3
- Date: Tue, 27 Jun 2023 13:58:46 GMT
- Title: CADet: Fully Self-Supervised Out-Of-Distribution Detection With
Contrastive Learning
- Authors: Charles Guille-Escuret, Pau Rodriguez, David Vazquez, Ioannis
Mitliagkas, Joao Monteiro
- Abstract summary: This work explores the use of self-supervised contrastive learning to the simultaneous detection of two types of OOD samples.
First, we pair self-supervised contrastive learning with the maximum mean discrepancy (MMD) two-sample test.
Motivated by this success, we introduce CADet, a novel method for OOD detection of single samples.
- Score: 11.897976063005315
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Handling out-of-distribution (OOD) samples has become a major stake in the
real-world deployment of machine learning systems. This work explores the use
of self-supervised contrastive learning to the simultaneous detection of two
types of OOD samples: unseen classes and adversarial perturbations. First, we
pair self-supervised contrastive learning with the maximum mean discrepancy
(MMD) two-sample test. This approach enables us to robustly test whether two
independent sets of samples originate from the same distribution, and we
demonstrate its effectiveness by discriminating between CIFAR-10 and CIFAR-10.1
with higher confidence than previous work. Motivated by this success, we
introduce CADet (Contrastive Anomaly Detection), a novel method for OOD
detection of single samples. CADet draws inspiration from MMD, but leverages
the similarity between contrastive transformations of a same sample. CADet
outperforms existing adversarial detection methods in identifying adversarially
perturbed samples on ImageNet and achieves comparable performance to unseen
label detection methods on two challenging benchmarks: ImageNet-O and
iNaturalist. Significantly, CADet is fully self-supervised and requires neither
labels for in-distribution samples nor access to OOD examples.
Related papers
- Margin-bounded Confidence Scores for Out-of-Distribution Detection [2.373572816573706]
We propose a novel method called Margin bounded Confidence Scores (MaCS) to address the nontrivial OOD detection problem.
MaCS enlarges the disparity between ID and OOD scores, which in turn makes the decision boundary more compact.
Experiments on various benchmark datasets for image classification tasks demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2024-09-22T05:40:25Z) - Resultant: Incremental Effectiveness on Likelihood for Unsupervised Out-of-Distribution Detection [63.93728560200819]
Unsupervised out-of-distribution (U-OOD) detection is to identify data samples with a detector trained solely on unlabeled in-distribution (ID) data.
Recent studies have developed various detectors based on DGMs to move beyond likelihood.
We apply two techniques for each direction, specifically post-hoc prior and dataset entropy-mutual calibration.
Experimental results demonstrate that the Resultant could be a new state-of-the-art U-OOD detector.
arXiv Detail & Related papers (2024-09-05T02:58:13Z) - Out-of-Distribution Detection with a Single Unconditional Diffusion Model [54.15132801131365]
Out-of-distribution (OOD) detection is a critical task in machine learning that seeks to identify abnormal samples.
Traditionally, unsupervised methods utilize a deep generative model for OOD detection.
This paper explores whether a single model can perform OOD detection across diverse tasks.
arXiv Detail & Related papers (2024-05-20T08:54:03Z) - General-Purpose Multi-Modal OOD Detection Framework [5.287829685181842]
Out-of-distribution (OOD) detection identifies test samples that differ from the training data, which is critical to ensuring the safety and reliability of machine learning (ML) systems.
We propose a general-purpose weakly-supervised OOD detection framework, called WOOD, that combines a binary classifier and a contrastive learning component.
We evaluate the proposed WOOD model on multiple real-world datasets, and the experimental results demonstrate that the WOOD model outperforms the state-of-the-art methods for multi-modal OOD detection.
arXiv Detail & Related papers (2023-07-24T18:50:49Z) - Cluster-aware Contrastive Learning for Unsupervised Out-of-distribution
Detection [0.0]
Unsupervised out-of-distribution (OOD) Detection aims to separate the samples falling outside the distribution of training data without label information.
We propose Cluster-aware Contrastive Learning (CCL) framework for unsupervised OOD detection, which considers both instance-level and semantic-level information.
arXiv Detail & Related papers (2023-02-06T07:21:03Z) - Breaking Down Out-of-Distribution Detection: Many Methods Based on OOD
Training Data Estimate a Combination of the Same Core Quantities [104.02531442035483]
The goal of this paper is to recognize common objectives as well as to identify the implicit scoring functions of different OOD detection methods.
We show that binary discrimination between in- and (different) out-distributions is equivalent to several distinct formulations of the OOD detection problem.
We also show that the confidence loss which is used by Outlier Exposure has an implicit scoring function which differs in a non-trivial fashion from the theoretically optimal scoring function.
arXiv Detail & Related papers (2022-06-20T16:32:49Z) - Understanding, Detecting, and Separating Out-of-Distribution Samples and
Adversarial Samples in Text Classification [80.81532239566992]
We compare the two types of anomalies (OOD and Adv samples) with the in-distribution (ID) ones from three aspects.
We find that OOD samples expose their aberration starting from the first layer, while the abnormalities of Adv samples do not emerge until the deeper layers of the model.
We propose a simple method to separate ID, OOD, and Adv samples using the hidden representations and output probabilities of the model.
arXiv Detail & Related papers (2022-04-09T12:11:59Z) - How to Exploit Hyperspherical Embeddings for Out-of-Distribution
Detection? [22.519572587827213]
CIDER is a representation learning framework that exploits hyperspherical embeddings for OOD detection.
CIDER establishes superior performance, outperforming the latest rival by 19.36% in FPR95.
arXiv Detail & Related papers (2022-03-08T23:44:01Z) - WOOD: Wasserstein-based Out-of-Distribution Detection [6.163329453024915]
Training data for deep-neural-network-based classifiers are usually assumed to be sampled from the same distribution.
When part of the test samples are drawn from a distribution that is far away from that of the training samples, the trained neural network has a tendency to make high confidence predictions for these OOD samples.
We propose a Wasserstein-based out-of-distribution detection (WOOD) method to overcome these challenges.
arXiv Detail & Related papers (2021-12-13T02:35:15Z) - Trash to Treasure: Harvesting OOD Data with Cross-Modal Matching for
Open-Set Semi-Supervised Learning [101.28281124670647]
Open-set semi-supervised learning (open-set SSL) investigates a challenging but practical scenario where out-of-distribution (OOD) samples are contained in the unlabeled data.
We propose a novel training mechanism that could effectively exploit the presence of OOD data for enhanced feature learning.
Our approach substantially lifts the performance on open-set SSL and outperforms the state-of-the-art by a large margin.
arXiv Detail & Related papers (2021-08-12T09:14:44Z) - Learn what you can't learn: Regularized Ensembles for Transductive
Out-of-distribution Detection [76.39067237772286]
We show that current out-of-distribution (OOD) detection algorithms for neural networks produce unsatisfactory results in a variety of OOD detection scenarios.
This paper studies how such "hard" OOD scenarios can benefit from adjusting the detection method after observing a batch of the test data.
We propose a novel method that uses an artificial labeling scheme for the test data and regularization to obtain ensembles of models that produce contradictory predictions only on the OOD samples in a test batch.
arXiv Detail & Related papers (2020-12-10T16:55:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.