論文の概要: Parallel AutoRegressive Models for Multi-Agent Combinatorial Optimization
- arxiv url: http://arxiv.org/abs/2409.03811v2
- Date: Wed, 05 Feb 2025 09:49:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-06 14:24:35.716005
- Title: Parallel AutoRegressive Models for Multi-Agent Combinatorial Optimization
- Title(参考訳): 多元組合せ最適化のための並列自己回帰モデル
- Authors: Federico Berto, Chuanbo Hua, Laurin Luttmann, Jiwoo Son, Junyoung Park, Kyuree Ahn, Changhyun Kwon, Lin Xie, Jinkyoo Park,
- Abstract要約: マルチエージェントタスクのための高品質なソリューションを効率的に構築するための強化学習フレームワークを提案する。
PARCOは,(1)並列ソリューション構築において効果的なエージェント協調を可能にするトランスフォーマーベースの通信層,(2)低レイテンシ,並列エージェント決定のためのマルチポインタ機構,(3)優先度ベースのコンフリクトハンドラの3つの重要なコンポーネントを統合する。
提案手法が最先端の学習手法より優れているマルチエージェント車両ルーティングおよびスケジューリング問題においてPARCOを評価し,強力な一般化能力と計算効率を示す。
- 参考スコア(独自算出の注目度): 17.392822956504848
- License:
- Abstract: Combinatorial optimization problems involving multiple agents are notoriously challenging due to their NP-hard nature and the necessity for effective agent coordination. Despite advancements in learning-based methods, existing approaches often face critical limitations, including suboptimal agent coordination, poor generalizability, and high computational latency. To address these issues, we propose Parallel AutoRegressive Combinatorial Optimization (PARCO), a reinforcement learning framework designed to construct high-quality solutions for multi-agent combinatorial tasks efficiently. To this end, PARCO integrates three key components: (1) transformer-based communication layers to enable effective agent collaboration during parallel solution construction, (2) a multiple pointer mechanism for low-latency, parallel agent decision-making, and (3) priority-based conflict handlers to resolve decision conflicts via learned priorities. We evaluate PARCO in multi-agent vehicle routing and scheduling problems where our approach outperforms state-of-the-art learning methods and demonstrates strong generalization ability and remarkable computational efficiency. Code available at: https://github.com/ai4co/parco.
- Abstract(参考訳): 複数のエージェントを含む組合せ最適化問題は、NPのハードな性質と効果的なエージェント調整の必要性により、非常に難しい。
学習ベースの手法の進歩にもかかわらず、既存のアプローチは、最適化エージェントの調整、一般化性の低さ、高い計算遅延など、重要な制限に直面していることが多い。
これらの課題に対処するために,マルチエージェント組合せタスクのための高品質なソリューションを構築するための強化学習フレームワークであるParallel AutoRegressive Combinatorial Optimization (PARCO)を提案する。
この目的のためにPARCOは,(1)トランスフォーマーベースの通信層による並列ソリューション構築時の効果的なエージェント協調を実現すること,(2)低レイテンシのためのマルチポインタ機構,(3)優先度ベースのコンフリクトハンドラによる意思決定競合の解決を優先的に行うこと,の3つの重要なコンポーネントを統合している。
提案手法が最先端の学習手法より優れているマルチエージェント車両ルーティングおよびスケジューリング問題においてPARCOを評価し,強力な一般化能力と計算効率を示す。
コードは、https://github.com/ai4co/parco.comで入手できる。
関連論文リスト
- Learning to Solve the Min-Max Mixed-Shelves Picker-Routing Problem via Hierarchical and Parallel Decoding [0.3867363075280544]
混合棚ピッカールーティング問題(MSPRP)はロジスティクスにおける基本的な課題であり、ピッカーはSKUを効率的に回収するために混合棚環境をナビゲートする必要がある。
マルチエージェント強化学習により,MSPRPのmin-max変異を解くための新しい階層的並列デコーディング手法を提案する。
実験では、特に大規模およびアウト・オブ・ディストリビューションインスタンスにおいて、ソリューションの品質と推論速度の両方で最先端のパフォーマンスを示す。
論文 参考訳(メタデータ) (2025-02-14T15:42:30Z) - A Multiagent Path Search Algorithm for Large-Scale Coalition Structure Generation [61.08720171136229]
結合構造生成はマルチエージェントシステムにおける基本的な計算問題である。
我々はCSGの多エージェントパス探索アルゴリズムであるSALDAEを開発し、連立構造グラフ上で運用する。
論文 参考訳(メタデータ) (2025-02-14T15:21:27Z) - Hierarchical Reinforcement Learning for Optimal Agent Grouping in Cooperative Systems [0.4759142872591625]
本稿では,協調型マルチエージェントシステムにおけるエージェントグループ化やペアリングの問題に対処するための階層型強化学習(RL)手法を提案する。
階層的なRLフレームワークを用いることで、グループ化の高レベル決定と低レベルのエージェントのアクションを区別する。
エージェント間の均質性や協調性を扱うために、置換型ニューラルネットワークを導入し、効果的な協調を可能にする。
論文 参考訳(メタデータ) (2025-01-11T14:22:10Z) - Design Optimization of NOMA Aided Multi-STAR-RIS for Indoor Environments: A Convex Approximation Imitated Reinforcement Learning Approach [51.63921041249406]
非直交多重アクセス(Noma)により、複数のユーザが同じ周波数帯域を共有でき、同時に再構成可能なインテリジェントサーフェス(STAR-RIS)を送信および反射することができる。
STAR-RISを屋内に展開することは、干渉緩和、電力消費、リアルタイム設定における課題を提示する。
複数のアクセスポイント(AP)、STAR-RIS、NOMAを利用した新しいネットワークアーキテクチャが屋内通信のために提案されている。
論文 参考訳(メタデータ) (2024-06-19T07:17:04Z) - Accelerate Presolve in Large-Scale Linear Programming via Reinforcement
Learning [92.31528918811007]
本稿では,P1)-(P3) を同時に扱うための簡易かつ効率的な強化学習フレームワーク,すなわち,事前解決のための強化学習(RL4Presolve)を提案する。
2つの解法と8つのベンチマーク(実世界と合成)の実験により、RL4Presolveは大規模LPの解法効率を大幅に改善することを示した。
論文 参考訳(メタデータ) (2023-10-18T09:51:59Z) - Hierarchical Reinforcement Learning with Opponent Modeling for
Distributed Multi-agent Cooperation [13.670618752160594]
深層強化学習(DRL)はエージェントと環境の相互作用を通じて多エージェント協調に有望なアプローチを提供する。
従来のDRLソリューションは、ポリシー探索中に連続的なアクション空間を持つ複数のエージェントの高次元に悩まされる。
効率的な政策探索のための高レベル意思決定と低レベル個別制御を用いた階層型強化学習手法を提案する。
論文 参考訳(メタデータ) (2022-06-25T19:09:29Z) - HAVEN: Hierarchical Cooperative Multi-Agent Reinforcement Learning with
Dual Coordination Mechanism [17.993973801986677]
多エージェント強化学習はしばしば、多数のエージェントによって引き起こされる指数関数的に大きな作用空間に悩まされる。
完全協調型マルチエージェント問題に対する階層的強化学習に基づく新しい値分解フレームワークHAVENを提案する。
論文 参考訳(メタデータ) (2021-10-14T10:43:47Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - MALib: A Parallel Framework for Population-based Multi-agent
Reinforcement Learning [61.28547338576706]
人口ベースマルチエージェント強化学習(PB-MARL)は、強化学習(RL)アルゴリズムでネストした一連の手法を指す。
PB-MARLのためのスケーラブルで効率的な計算フレームワークMALibを提案する。
論文 参考訳(メタデータ) (2021-06-05T03:27:08Z) - A Novel Multi-Agent System for Complex Scheduling Problems [2.294014185517203]
本稿では,様々な問題領域に適用可能なマルチエージェントシステムの概念と実装について述べる。
提案手法の有効性を示すため,NP-hardスケジューリング問題をシミュレートする。
本稿では,レイアウトの複雑さの低減,複雑なシステムの制御の改善,拡張性など,エージェントベースのアプローチの利点を強調した。
論文 参考訳(メタデータ) (2020-04-20T14:04:58Z) - F2A2: Flexible Fully-decentralized Approximate Actor-critic for
Cooperative Multi-agent Reinforcement Learning [110.35516334788687]
分散マルチエージェント強化学習アルゴリズムは複雑なアプリケーションでは実践的でないことがある。
本稿では,大規模で汎用的なマルチエージェント設定を扱える,柔軟な完全分散型アクター批判型MARLフレームワークを提案する。
当社のフレームワークは,大規模環境におけるスケーラビリティと安定性を実現し,情報伝達を低減できる。
論文 参考訳(メタデータ) (2020-04-17T14:56:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。