論文の概要: Can We Theoretically Quantify the Impacts of Local Updates on the Generalization Performance of Federated Learning?
- arxiv url: http://arxiv.org/abs/2409.03863v1
- Date: Thu, 5 Sep 2024 19:00:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-09 17:30:22.613708
- Title: Can We Theoretically Quantify the Impacts of Local Updates on the Generalization Performance of Federated Learning?
- Title(参考訳): 局所的な更新がフェデレーション学習の一般化性能に与える影響を理論的に定量化できるか?
- Authors: Peizhong Ju, Haibo Yang, Jia Liu, Yingbin Liang, Ness Shroff,
- Abstract要約: フェデレートラーニング(FL)は、直接データ共有を必要とせず、さまざまなサイトで機械学習モデルをトレーニングする効果により、大きな人気を集めている。
局所的な更新を伴うFLは通信効率のよい分散学習フレームワークであることが様々なアルゴリズムによって示されているが、局所的な更新によるFLの一般化性能は比較的低い。
- 参考スコア(独自算出の注目度): 50.03434441234569
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) has gained significant popularity due to its effectiveness in training machine learning models across diverse sites without requiring direct data sharing. While various algorithms along with their optimization analyses have shown that FL with local updates is a communication-efficient distributed learning framework, the generalization performance of FL with local updates has received comparatively less attention. This lack of investigation can be attributed to the complex interplay between data heterogeneity and infrequent communication due to the local updates within the FL framework. This motivates us to investigate a fundamental question in FL: Can we quantify the impact of data heterogeneity and local updates on the generalization performance for FL as the learning process evolves? To this end, we conduct a comprehensive theoretical study of FL's generalization performance using a linear model as the first step, where the data heterogeneity is considered for both the stationary and online/non-stationary cases. By providing closed-form expressions of the model error, we rigorously quantify the impact of the number of the local updates (denoted as $K$) under three settings ($K=1$, $K<\infty$, and $K=\infty$) and show how the generalization performance evolves with the number of rounds $t$. Our investigation also provides a comprehensive understanding of how different configurations (including the number of model parameters $p$ and the number of training samples $n$) contribute to the overall generalization performance, thus shedding new insights (such as benign overfitting) for implementing FL over networks.
- Abstract(参考訳): フェデレートラーニング(FL)は、直接データ共有を必要とせず、さまざまなサイトで機械学習モデルをトレーニングする効果により、大きな人気を集めている。
局所的な更新を伴うFLは通信効率のよい分散学習フレームワークであることを示しているが、局所的な更新を伴うFLの一般化性能は比較的低い。
この調査の欠如は、FLフレームワーク内のローカル更新によるデータ不均一性と頻繁な通信の間の複雑な相互作用に起因する可能性がある。
学習プロセスが進化するにつれて、データの異質性や局所的な更新がFLの一般化性能に与える影響を定量化できますか?
この目的のために、線形モデルを用いたFLの一般化性能に関する包括的な理論的研究を行い、定常・オンライン・非定常両方のケースにおいてデータの均一性を考慮した。
モデルエラーのクローズドフォーム表現を提供することにより、3つの設定(K=1$, $K<\infty$, $K=\infty$)で局所的な更新回数(K$と表記される)の影響を厳格に定量化し、一般化性能がラウンド数$t$でどのように進化するかを示す。
我々の調査はまた、異なる構成(モデルパラメータ数$p$とトレーニングサンプル数$n$を含む)が全体的な一般化性能にどのように貢献するかを包括的に理解し、FLオーバーネットワークを実装するための新たな洞察(良心過剰化など)を隠蔽する。
関連論文リスト
- FedHPL: Efficient Heterogeneous Federated Learning with Prompt Tuning and Logit Distillation [32.305134875959226]
フェデレートラーニング(FL)は、分散クライアントが中央サーバーでモデルを協調訓練できるプライバシー保護パラダイムである。
我々はパラメータ効率の高い$textbfFed$erated Learning framework for $textbfH$eterogeneous settingsを提案する。
我々のフレームワークは最先端のFLアプローチより優れており、オーバーヘッドもトレーニングラウンドも少なくなっている。
論文 参考訳(メタデータ) (2024-05-27T15:25:32Z) - Multi-level Personalized Federated Learning on Heterogeneous and Long-Tailed Data [10.64629029156029]
マルチレベル・パーソナライズド・フェデレーション・ラーニング(MuPFL)という革新的パーソナライズド・パーソナライズド・ラーニング・フレームワークを導入する。
MuPFLは3つの重要なモジュールを統合している: Biased Activation Value Dropout (BAVD), Adaptive Cluster-based Model Update (ACMU), Prior Knowledge-assisted Fine-tuning (PKCF)。
様々な実世界のデータセットの実験では、MuPFLは極端に非i.d.と長い尾の条件下であっても、最先端のベースラインを一貫して上回っている。
論文 参考訳(メタデータ) (2024-05-10T11:52:53Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - Integrating Local Real Data with Global Gradient Prototypes for
Classifier Re-Balancing in Federated Long-Tailed Learning [60.41501515192088]
フェデレートラーニング(FL)は、グローバルモデルを協調的にトレーニングする複数のクライアントを含む、人気のある分散ラーニングパラダイムになっています。
データサンプルは通常、現実世界の長い尾の分布に従っており、分散化された長い尾のデータのFLは、貧弱なグローバルモデルをもたらす。
本研究では、局所的な実データとグローバルな勾配のプロトタイプを統合し、局所的なバランスの取れたデータセットを形成する。
論文 参考訳(メタデータ) (2023-01-25T03:18:10Z) - When Federated Learning Meets Pre-trained Language Models'
Parameter-Efficient Tuning Methods [22.16636947999123]
フェデレート学習に様々なパラメータ効率チューニング(PETuning)手法を導入する。
具体的には,FL における代表的 PLM チューニング手法の総合的研究について述べる。
全体としての通信オーバーヘッドは、局所的なチューニングと、軽量モデルパラメータのグローバル集約によって大幅に削減できる。
論文 参考訳(メタデータ) (2022-12-20T06:44:32Z) - FL Games: A Federated Learning Framework for Distribution Shifts [71.98708418753786]
フェデレートラーニングは、サーバのオーケストレーションの下で、クライアント間で分散されたデータの予測モデルをトレーニングすることを目的としている。
本稿では,クライアント間で不変な因果的特徴を学習するフェデレーション学習のためのゲーム理論フレームワークFL GAMESを提案する。
論文 参考訳(メタデータ) (2022-10-31T22:59:03Z) - On the Importance and Applicability of Pre-Training for Federated
Learning [28.238484580662785]
我々は,連合学習のための事前学習を体系的に研究する。
事前学習はFLを改善するだけでなく,その精度のギャップを集中学習に埋めることもできる。
本論文は,FLに対する事前学習の効果を解明する試みとしてまとめる。
論文 参考訳(メタデータ) (2022-06-23T06:02:33Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
フェデレートラーニング(FL)は、プライバシを保護しながら機械学習モデルの分散最適化を可能にする。
我々は,FedRegを提案する。FedRegは,局所的な訓練段階において,知識を忘れることなくFLを加速するアルゴリズムである。
我々の実験は、FedRegはFLの収束率を著しく改善するだけでなく、特にニューラルネットワークアーキテクチャが深い場合にも改善することを示した。
論文 参考訳(メタデータ) (2022-03-05T02:31:32Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z) - Federated learning with hierarchical clustering of local updates to
improve training on non-IID data [3.3517146652431378]
一つのジョイントモデルを学ぶことは、特定の種類の非IDデータが存在する場合に最適ではないことがよく示される。
階層的クラスタリングステップ(FL+HC)を導入することでFLに修正を加える。
FL+HCは,クラスタリングを伴わないFLに比べて,より少ない通信ラウンドでモデルトレーニングを収束させることができることを示す。
論文 参考訳(メタデータ) (2020-04-24T15:16:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。