論文の概要: Multi-Camera Industrial Open-Set Person Re-Identification and Tracking
- arxiv url: http://arxiv.org/abs/2409.03879v1
- Date: Thu, 5 Sep 2024 19:36:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-09 17:30:22.598141
- Title: Multi-Camera Industrial Open-Set Person Re-Identification and Tracking
- Title(参考訳): マルチカメラ産業用オープンセット人物の認識と追跡
- Authors: Federico Cunico, Marco Cristani,
- Abstract要約: 本研究は、リアルタイムでスケーラブルで、既存の産業監視シナリオに容易に統合可能な、モジュラー産業用マルチカメラ再同定およびオープンセットトラッキングシステムを提案する。
8台の監視カメラで捉えた18分間のビデオで構成された、ファシリティ・リIDと呼ばれる工業工場で取得した新しいRe-IDと追跡データセットをリリースする。
- 参考スコア(独自算出の注目度): 9.452823389787195
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In recent years, the development of deep learning approaches for the task of person re-identification led to impressive results. However, this comes with a limitation for industrial and practical real-world applications. Firstly, most of the existing works operate on closed-world scenarios, in which the people to re-identify (probes) are compared to a closed-set (gallery). Real-world scenarios often are open-set problems in which the gallery is not known a priori, but the number of open-set approaches in the literature is significantly lower. Secondly, challenges such as multi-camera setups, occlusions, real-time requirements, etc., further constrain the applicability of off-the-shelf methods. This work presents MICRO-TRACK, a Modular Industrial multi-Camera Re_identification and Open-set Tracking system that is real-time, scalable, and easy to integrate into existing industrial surveillance scenarios. Furthermore, we release a novel Re-ID and tracking dataset acquired in an industrial manufacturing facility, dubbed Facility-ReID, consisting of 18-minute videos captured by 8 surveillance cameras.
- Abstract(参考訳): 近年, 個人再識別作業のためのディープラーニング手法の開発が目覚ましい結果をもたらした。
しかし、これは産業的および実践的な現実世界の応用に制限が伴う。
まず、既存の作品のほとんどはクローズドワールドのシナリオで動作し、そのシナリオでは、再識別(プローブ)をクローズドセット(ギャリー)と比較します。
現実のシナリオはしばしば、ギャラリーが先駆的でないようなオープンセットの問題であるが、文献におけるオープンセットのアプローチの数は著しく少ない。
第二に、マルチカメラセットアップ、オクルージョン、リアルタイム要件などの課題により、オフザシェルフメソッドの適用性はさらに制限される。
この研究は、Modular Industrial Multi-Camera Re_identification and Open-set Tracking SystemであるMICRO-TRACKを提示する。
さらに,8台の監視カメラで捉えた18分間のビデオで構成された,ファシリティ・リIDと呼ばれる工業生産施設で取得した新しいRe-IDおよび追跡データセットをリリースする。
関連論文リスト
- IPAD: Industrial Process Anomaly Detection Dataset [71.39058003212614]
ビデオ異常検出(VAD)は,ビデオフレーム内の異常を認識することを目的とした課題である。
本稿では,産業シナリオにおけるVADに特化して設計された新しいデータセットIPADを提案する。
このデータセットは16の異なる産業用デバイスをカバーし、合成ビデオと実世界のビデオの両方を6時間以上保存している。
論文 参考訳(メタデータ) (2024-04-23T13:38:01Z) - MTMMC: A Large-Scale Real-World Multi-Modal Camera Tracking Benchmark [63.878793340338035]
マルチターゲットマルチカメラトラッキングは、複数のカメラからのビデオストリームを使用して個人を特定し、追跡する重要なタスクである。
このタスクの既存のデータセットは、制御されたカメラネットワーク設定内で合成または人工的に構築される。
我々は16台のマルチモーダルカメラで2つの異なる環境でキャプチャされた長いビデオシーケンスを含む実世界の大規模データセットであるMTMMCを紹介する。
論文 参考訳(メタデータ) (2024-03-29T15:08:37Z) - A Survey on Open-Set Image Recognition [18.474539379698538]
オープンセット画像認識(OSR)は、既知のクラスサンプルの分類と、テストセット内の未知クラスサンプルの識別の両方を目的としている。
我々は,既存のDNNベースのOSR手法を包括的にレビューする新しい分類法を提案する。
我々は、粗粒度データセットと細粒度データセットの両方において、典型的なOSR法と最先端OSR法のパフォーマンスを比較した。
論文 参考訳(メタデータ) (2023-12-25T00:30:23Z) - Generalizable Person Search on Open-world User-Generated Video Content [93.72028298712118]
人物の検索は、大量の露骨なシーン画像から個人を検索する、困難な作業である。
既存の人検索アプリケーションは、ほとんどトレーニングされ、同じシナリオにデプロイされます。
本稿では,任意のシナリオにおける下流タスクを容易にするために,特徴レベルとデータレベルの両方の一般化可能なフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-16T04:59:50Z) - Bayesian Embeddings for Few-Shot Open World Recognition [60.39866770427436]
埋め込みベースの数ショット学習アルゴリズムをオープンワールド認識設定に拡張する。
当社のフレームワークは,MiniImageNetとTieredImageNetによる数ショット学習データセットのオープンワールド拡張をベンチマークする。
論文 参考訳(メタデータ) (2021-07-29T00:38:47Z) - Self-supervised Human Detection and Segmentation via Multi-view
Consensus [116.92405645348185]
本稿では,トレーニング中に幾何学的制約を多視点一貫性という形で組み込むマルチカメラフレームワークを提案する。
本手法は,標準ベンチマークから視覚的に外れた画像に対して,最先端の自己監視的人物検出とセグメンテーション技術に勝ることを示す。
論文 参考訳(メタデータ) (2020-12-09T15:47:21Z) - Survey on Reliable Deep Learning-Based Person Re-Identification Models:
Are We There Yet? [19.23187114221822]
人物再識別(PReID)は、インテリジェントビデオ監視(IVS)において最も重大な問題の一つである。
ディープニューラルネットワーク(DNN)は、同様のビジョン問題とテスト時の高速実行に魅力的なパフォーマンスを与えた。
ベンチマークデータセットのセット上で、各モデルについての評価とともに、各モデルについて記述する。
論文 参考訳(メタデータ) (2020-04-30T16:09:16Z) - Deep Learning for Person Re-identification: A Survey and Outlook [233.36948173686602]
人物再識別(Re-ID)は、複数の重複しないカメラを通して興味ある人物を検索することを目的としている。
人物のRe-IDシステム開発に関わるコンポーネントを分離することにより、それをクローズドワールドとオープンワールドのセッティングに分類する。
論文 参考訳(メタデータ) (2020-01-13T12:49:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。