CMOS compatibility of semiconductor spin qubits
- URL: http://arxiv.org/abs/2409.03993v1
- Date: Fri, 6 Sep 2024 02:45:24 GMT
- Title: CMOS compatibility of semiconductor spin qubits
- Authors: Nard Dumoulin Stuyck, Andre Saraiva, Will Gilbert, Jesus Cifuentes Pardo, Ruoyu Li, Christopher C. Escott, Kristiaan De Greve, Sorin Voinigescu, David J. Reilly, Andrew S. Dzurak,
- Abstract summary: Review focuses on the overlap between state-of-the-art semiconductor spin qubit systems and CMOS industry Very Large-Scale Integration (VLSI) principles.
We identify the main differences in spin qubit operation, material, and system requirements compared to well-established CMOS industry practices.
- Score: 1.233369256422544
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Several domains of society will be disrupted once millions of high-quality qubits can be brought together to perform fault-tolerant quantum computing (FTQC). All quantum computing hardware available today is many orders of magnitude removed from the requirements for FTQC. The intimidating challenges associated with integrating such complex systems have already been addressed by the semiconductor industry -hence many qubit makers have retrofitted their technology to be CMOS-compatible. This compatibility, however, can have varying degrees ranging from the mere ability to fabricate qubits using a silicon wafer as a substrate, all the way to the co-integration of qubits with high-yield, low-power advanced electronics to control these qubits. Extrapolating the evolution of quantum processors to future systems, semiconductor spin qubits have unique advantages in this respect, making them one of the most serious contenders for large-scale FTQC. In this review, we focus on the overlap between state-of-the-art semiconductor spin qubit systems and CMOS industry Very Large-Scale Integration (VLSI) principles. We identify the main differences in spin qubit operation, material, and system requirements compared to well-established CMOS industry practices. As key players in the field are looking to collaborate with CMOS industry partners, this review serves to accelerate R&D towards the industrial scale production of FTQC processors.
Related papers
- Cryogenic Control and Readout Integrated Circuits for Solid-State Quantum Computing [44.99833362998488]
cryogenic integrated circuits (ICs) have emerged as potential alternatives to room-temperature electronics.
operating at cryogenic temperatures can suppress electronic noise and improve qubit control fidelity.
For CMOS ICs specifically, circuit design uncertainties arise due to a lack of reliable models for cryogenic field effect transistors.
arXiv Detail & Related papers (2024-10-21T11:15:45Z) - Technology and Performance Benchmarks of IQM's 20-Qubit Quantum Computer [56.435136806763055]
IQM Quantum Computers is described covering both the QPU and the rest of the full-stack quantum computer.
The focus is on a 20-qubit quantum computer featuring the Garnet QPU and its architecture, which we will scale up to 150 qubits.
We present QPU and system-level benchmarks, including a median 2-qubit gate fidelity of 99.5% and genuinely entangling all 20 qubits in a Greenberger-Horne-Zeilinger (GHZ) state.
arXiv Detail & Related papers (2024-08-22T14:26:10Z) - Spin Qubits with Scalable milli-kelvin CMOS Control [0.0]
We benchmark silicon MOS-style electron spin qubits controlled via heterogeneously-integrated cryo-CMOS circuits.
We show that mill-kelvin control has little impact on the performance of single- and two-qubit gates.
arXiv Detail & Related papers (2024-07-21T13:04:21Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Heterogeneous integration of spin-photon interfaces with a scalable CMOS
platform [1.2253948665073315]
General-purpose quantum computing using local quantum communication networks will require millions of physical qubits to encode thousands of logical qubits.
We introduce a scalable hardware modular architecture "Quantum System-on-Chip" (QSoC)
QSoC features compact two-dimensional arrays "quantum microchiplets" (QMCs) containing tin-vacancy (SnV-) spin qubits integrated on a cryogenic application-specific integrated circuit (ASIC)
arXiv Detail & Related papers (2023-08-28T04:06:11Z) - The SpinBus Architecture: Scaling Spin Qubits with Electron Shuttling [42.60602838972598]
We introduce the SpinBus architecture, which uses electron shuttling to connect qubits and features low operating frequencies and enhanced qubit coherence.
Control using room temperature instruments can plausibly support at least 144 qubits, but much larger numbers are conceivable with cryogenic control circuits.
arXiv Detail & Related papers (2023-06-28T16:24:11Z) - Integrated multiplexed microwave readout of silicon quantum dots in a
cryogenic CMOS chip [0.5202988483354373]
Solid-state quantum computers require classical electronics to control and readout individual qubits and to enable fast classical data processing.
Integrating both subsystems at deep cryogenic temperatures may solve some major scaling challenges, such as system size and input/output (I/O) data management.
Here we present a cryogenic integrated circuit (IC) fabricated using industrial CMOS technology that hosts three key ingredients of a silicon-based quantum processor.
arXiv Detail & Related papers (2021-01-20T19:30:15Z) - CMOS Quantum Computing: Toward A Quantum Computer System-on-Chip [0.0]
CMOS technology provides potential for the integration of qubits with their control and readout circuits on a single chip.
This paves the way for the realization of a large-scale quantum computing system.
arXiv Detail & Related papers (2020-12-16T15:36:17Z) - Scaling silicon-based quantum computing using CMOS technology:
State-of-the-art, Challenges and Perspectives [0.0]
We focus on the analysis of the scaling prospects of quantum computing systems based on CMOS technology.
Recent breakthroughs in nanodevice engineering have shown that qubits can now be manufactured in a similar fashion to silicon field-effect transistors.
arXiv Detail & Related papers (2020-11-23T21:59:39Z) - Millikelvin temperature cryo-CMOS multiplexer for scalable quantum
device characterisation [44.07593636917153]
Quantum computers based on solid state qubits have been a subject of rapid development in recent years.
Currently, each quantum device is controlled and characterised though a dedicated signal line between room temperature and base temperature of a dilution refrigerator.
This approach is not scalable and is currently limiting the development of large-scale quantum system integration and quantum device characterisation.
arXiv Detail & Related papers (2020-11-23T16:22:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.