A trilinear quantum dot architecture for semiconductor spin qubits
- URL: http://arxiv.org/abs/2501.17814v2
- Date: Thu, 20 Mar 2025 16:49:26 GMT
- Title: A trilinear quantum dot architecture for semiconductor spin qubits
- Authors: R. Li, V. Levajac, C. Godfrin, S. Kubicek, G. Simion, B. Raes, S. Beyne, I. Fattal, A. Loenders, W. De Roeck, M. Mongillo, D. Wan, K. De Greve,
- Abstract summary: We present a trilinear quantum dot array that is simple in physical layout while allowing individual wiring to each quantum dot.<n>By means of electron shuttling, the trilinear architecture provides qubit connectivity that is equivalent to or even surpasses that of 2D square lattice.<n>We also present a scalable control scheme, where the qubit chip is 3D-integrated with a low-power switch-based cryoCMOS circuit for parallel qubit operation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semiconductor quantum dot spin qubits hold significant potential for scaling to millions of qubits for practical quantum computing applications, as their structure highly resembles the structure of conventional transistors. Since classical semiconductor manufacturing technology has reached an unprecedented level of maturity, reliably mass-producing CMOS chips with hundreds of billions of components, conventional wisdom dictates that leveraging CMOS technologies for quantum dot qubits can result in upscaled quantum processors with thousands or even millions of interconnected qubits. However, the interconnect requirements for quantum circuits are very different from those for classical circuits, where for each qubit individual control and readout wiring could be needed. Although significant developments have been demonstrated on small scale systems, qubit numbers remain limited, to a large extent due to the lack of scalable qubit interconnect schemes. Here, we present a trilinear quantum dot array that is simple in physical layout while allowing individual wiring to each quantum dot. By means of electron shuttling, the trilinear architecture provides qubit connectivity that is equivalent to or even surpasses that of 2D square lattice. Assuming the current qubit fidelities of small-scale devices can be extrapolated to large-scale arrays, medium-length shuttling arrays on the order of tens of microns would allow million-scale qubit systems, while maintaining manageable overheads. We also present a scalable control scheme, where the qubit chip is 3D-integrated with a low-power switch-based cryoCMOS circuit for parallel qubit operation with limited control inputs. As our trilinear quantum dot array is fully compatible with existing semiconductor technologies, this qubit architecture represents one possible framework for future research and development of large-scale spin qubit systems.
Related papers
- Performance Characterization of a Multi-Module Quantum Processor with Static Inter-Chip Couplers [63.42120407991982]
Three-dimensional integration technologies such as flip-chip bonding are a key prerequisite to realize large-scale superconducting quantum processors.
We present a design for a multi-chip module comprising one carrier chip and four qubit modules.
Measuring two of the qubits, we analyze the readout performance, finding a mean three-level state-assignment error of $9 times 10-3$ in 200 ns.
We demonstrate a controlled-Z two-qubit gate in 100 ns with an error of $7 times 10-3$ extracted from interleaved randomized benchmarking.
arXiv Detail & Related papers (2025-03-16T18:32:44Z) - A Superconducting Qubit-Resonator Quantum Processor with Effective All-to-All Connectivity [44.72199649564072]
This architecture can be used as a test-bed for algorithms that benefit from high connectivity.
We show that the central resonator can be used as a computational element.
We achieve a genuinely multi-qubit entangled Greenberger-Horne-Zeilinger (GHZ) state over all six qubits with a readout-error mitigated fidelity of $0.86$.
arXiv Detail & Related papers (2025-03-13T21:36:18Z) - Semiconductor Circuits for Quantum Computing with Electronic Wave Packets [0.15729203067736897]
We propose an alternative approach that utilizes flying electronic wave packets propagating in solid-state quantum semiconductor circuits.
Hardware requirements are drastically reduced because qubits can be created on-demand and manipulated with a common hardware element.
This landmark lays the foundation for fault-tolerant quantum computing with a compact and scalable architecture.
arXiv Detail & Related papers (2024-10-21T17:51:13Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Distributed Quantum Computing in Silicon [40.16556091789959]
We present preliminary demonstrations of some key distributed quantum computing protocols on silicon T centres in isotopically-enriched silicon.
We demonstrate the distribution of entanglement between modules and consume it to apply a teleported gate sequence.
arXiv Detail & Related papers (2024-06-03T18:02:49Z) - The SpinBus Architecture: Scaling Spin Qubits with Electron Shuttling [42.60602838972598]
We introduce the SpinBus architecture, which uses electron shuttling to connect qubits and features low operating frequencies and enhanced qubit coherence.
Control using room temperature instruments can plausibly support at least 144 qubits, but much larger numbers are conceivable with cryogenic control circuits.
arXiv Detail & Related papers (2023-06-28T16:24:11Z) - Overcoming I/O bottleneck in superconducting quantum computing:
multiplexed qubit control with ultra-low-power, base-temperature cryo-CMOS
multiplexer [40.37334699475035]
Large-scale superconducting quantum computing systems entail high-fidelity control and readout of qubits at millikelvin temperatures.
Cryo-electronics may offer a scalable and versatile solution to overcome this bottleneck.
Here we present an ultra-low power radio-frequency (RF) multiplexing cryo-electronics solution operating below 15 mK.
arXiv Detail & Related papers (2022-09-26T22:38:09Z) - Shared control of a 16 semiconductor quantum dot crossbar array [0.0]
We introduce the shared control of semiconductor quantum dots to efficiently operate a two-dimensional crossbar array in planar germanium.
We establish a method for the selective control of the quantum dots interdot coupling and achieve a tunnel coupling tunability over more than 10 GHz.
arXiv Detail & Related papers (2022-09-14T12:59:50Z) - Jellybean quantum dots in silicon for qubit coupling and on-chip quantum
chemistry [0.6818394664182874]
Small size and excellent integrability of silicon metal-oxide-semiconductor (SiMOS) quantum dot spin qubits make them an attractive system for mass-manufacturable, scaled-up quantum processors.
This paper investigates the charge and spin characteristics of an elongated quantum dot for the prospects of acting as a qubit-qubit coupler.
arXiv Detail & Related papers (2022-08-08T12:24:46Z) - A quantum processor based on coherent transport of entangled atom arrays [44.62475518267084]
We show a quantum processor with dynamic, nonlocal connectivity, in which entangled qubits are coherently transported in a highly parallel manner.
We use this architecture to realize programmable generation of entangled graph states such as cluster states and a 7-qubit Steane code state.
arXiv Detail & Related papers (2021-12-07T19:00:00Z) - Spiderweb array: A sparse spin-qubit array [0.04582374977939354]
One of the main bottlenecks in the pursuit of a large-scale--chip-based quantum computer is the large number of control signals needed to operate qubit systems.
Here, we discuss a quantum-dot spin-qubit architecture that integrates on-chip control electronics, allowing for a significant reduction in the number of signal connections at the chip boundary.
arXiv Detail & Related papers (2021-10-01T03:20:29Z) - Roadmap for Rare-earth Quantum Computing [42.0895440675898]
Rare-earth ions in solids constitute one of the most versatile platforms for future quantum technology.
One advantage is good coherence properties even when confined in strong natural traps inside a solid-state matrix.
clusters of 50-100 single RE ions can act as high fidelity qubits in small processors.
arXiv Detail & Related papers (2021-03-29T16:28:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.