SPACE: A Python-based Simulator for Evaluating Decentralized Multi-Robot Task Allocation Algorithms
- URL: http://arxiv.org/abs/2409.04230v1
- Date: Fri, 6 Sep 2024 12:38:24 GMT
- Title: SPACE: A Python-based Simulator for Evaluating Decentralized Multi-Robot Task Allocation Algorithms
- Authors: Inmo Jang,
- Abstract summary: We propose SPACE (Swarm Planning and Control Evaluation), a Python-based simulator designed to support the research, evaluation, and comparison of decentralized Multi-Robot Task Allocation (MRTA) algorithms.
SPACE streamlines core algorithmic development by allowing users to implement decision-making algorithms as Python plug-ins, easily construct agent behavior trees via an intuitive GUI, and leverage built-in support for inter-agent communication and local task awareness.
- Score: 1.52292571922932
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Swarm robotics explores the coordination of multiple robots to achieve collective goals, with collective decision-making being a central focus. This process involves decentralized robots autonomously making local decisions and communicating them, which influences the overall emergent behavior. Testing such decentralized algorithms in real-world scenarios with hundreds or more robots is often impractical, underscoring the need for effective simulation tools. We propose SPACE (Swarm Planning and Control Evaluation), a Python-based simulator designed to support the research, evaluation, and comparison of decentralized Multi-Robot Task Allocation (MRTA) algorithms. SPACE streamlines core algorithmic development by allowing users to implement decision-making algorithms as Python plug-ins, easily construct agent behavior trees via an intuitive GUI, and leverage built-in support for inter-agent communication and local task awareness. To demonstrate its practical utility, we implement and evaluate CBBA and GRAPE within the simulator, comparing their performance across different metrics, particularly in scenarios with dynamically introduced tasks. This evaluation shows the usefulness of SPACE in conducting rigorous and standardized comparisons of MRTA algorithms, helping to support future research in the field.
Related papers
- Generalizability of Graph Neural Networks for Decentralized Unlabeled Motion Planning [72.86540018081531]
Unlabeled motion planning involves assigning a set of robots to target locations while ensuring collision avoidance.
This problem forms an essential building block for multi-robot systems in applications such as exploration, surveillance, and transportation.
We address this problem in a decentralized setting where each robot knows only the positions of its $k$-nearest robots and $k$-nearest targets.
arXiv Detail & Related papers (2024-09-29T23:57:25Z) - LPAC: Learnable Perception-Action-Communication Loops with Applications
to Coverage Control [80.86089324742024]
We propose a learnable Perception-Action-Communication (LPAC) architecture for the problem.
CNN processes localized perception; a graph neural network (GNN) facilitates robot communications.
Evaluations show that the LPAC models outperform standard decentralized and centralized coverage control algorithms.
arXiv Detail & Related papers (2024-01-10T00:08:00Z) - Asynchronous Perception-Action-Communication with Graph Neural Networks [93.58250297774728]
Collaboration in large robot swarms to achieve a common global objective is a challenging problem in large environments.
The robots must execute a Perception-Action-Communication loop -- they perceive their local environment, communicate with other robots, and take actions in real time.
Recently, this has been addressed using Graph Neural Networks (GNNs) for applications such as flocking and coverage control.
This paper proposes a framework for asynchronous PAC in robot swarms, where decentralized GNNs are used to compute navigation actions and generate messages for communication.
arXiv Detail & Related papers (2023-09-18T21:20:50Z) - Multi-robot Social-aware Cooperative Planning in Pedestrian Environments
Using Multi-agent Reinforcement Learning [2.7716102039510564]
We propose a novel multi-robot social-aware efficient cooperative planner that on the basis of off-policy multi-agent reinforcement learning (MARL)
We adopt temporal-spatial graph (TSG)-based social encoder to better extract the importance of social relation between each robot and the pedestrians in its field of view (FOV)
arXiv Detail & Related papers (2022-11-29T03:38:47Z) - Discovering Unsupervised Behaviours from Full-State Trajectories [1.827510863075184]
We propose an analysis of Autonomous Robots Realising their Abilities; a Quality-Diversity algorithm that autonomously finds behavioural characterisations.
We evaluate this approach on a simulated robotic environment, where the robot has to autonomously discover its abilities from its full-state trajectories.
More specifically, the analysed approach autonomously finds policies that make the robot move to diverse positions, but also utilise its legs in diverse ways, and even perform half-rolls.
arXiv Detail & Related papers (2022-11-22T16:57:52Z) - HARPS: An Online POMDP Framework for Human-Assisted Robotic Planning and
Sensing [1.3678064890824186]
The Human Assisted Robotic Planning and Sensing (HARPS) framework is presented for active semantic sensing and planning in human-robot teams.
This approach lets humans opportunistically impose model structure and extend the range of semantic soft data in uncertain environments.
Simulations of a UAV-enabled target search application in a large-scale partially structured environment show significant improvements in time and belief state estimates.
arXiv Detail & Related papers (2021-10-20T00:41:57Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
We present an end-to-end online motion planning framework that uses a data-driven approach to navigate a heterogeneous robot team towards a global goal.
We use model predictive control (SMPC) to calculate control inputs that satisfy robot dynamics, and consider uncertainty during obstacle avoidance with chance constraints.
recurrent neural networks are used to provide a quick estimate of future state uncertainty considered in the SMPC finite-time horizon solution.
A Deep Q-learning agent is employed to serve as a high-level path planner, providing the SMPC with target positions that move the robots towards a desired global goal.
arXiv Detail & Related papers (2021-08-03T02:56:21Z) - Robotic Brain Storm Optimization: A Multi-target Collaborative Searching
Paradigm for Swarm Robotics [24.38312890501329]
This paper proposes a BSO-based collaborative searching framework for swarm robotics called Robotic BSO.
The proposed method can simulate the BSO's guided search characteristics and has an excellent prospect for multi-target searching problems for swarm robotics.
arXiv Detail & Related papers (2021-05-27T13:05:48Z) - Graph Neural Networks for Decentralized Multi-Robot Submodular Action
Selection [101.38634057635373]
We focus on applications where robots are required to jointly select actions to maximize team submodular objectives.
We propose a general-purpose learning architecture towards submodular at scale, with decentralized communications.
We demonstrate the performance of our GNN-based learning approach in a scenario of active target coverage with large networks of robots.
arXiv Detail & Related papers (2021-05-18T15:32:07Z) - A User's Guide to Calibrating Robotics Simulators [54.85241102329546]
This paper proposes a set of benchmarks and a framework for the study of various algorithms aimed to transfer models and policies learnt in simulation to the real world.
We conduct experiments on a wide range of well known simulated environments to characterize and offer insights into the performance of different algorithms.
Our analysis can be useful for practitioners working in this area and can help make informed choices about the behavior and main properties of sim-to-real algorithms.
arXiv Detail & Related papers (2020-11-17T22:24:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.