Cycle Pixel Difference Network for Crisp Edge Detection
- URL: http://arxiv.org/abs/2409.04272v1
- Date: Fri, 6 Sep 2024 13:28:05 GMT
- Title: Cycle Pixel Difference Network for Crisp Edge Detection
- Authors: Changsong Liu, Wei Zhang, Yanyan Liu, Mingyang Li, Wenlin Li, Yimeng Fan, Xiangnan Bai, Liang Zhangd,
- Abstract summary: This paper proposes a novel cycle pixel difference convolution (CPDC), which integrates image gradient information with modern convolution operations.
To address the issue of edge thickness produced by most existing methods, we construct a multi-scale information enhancement module (MSEM)
Our approach provides a novel perspective for addressing these challenges in edge detection.
- Score: 12.642567744605183
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Edge detection, as a fundamental task in computer vision, has garnered increasing attention. The advent of deep learning has significantly advanced this field. However, recent deep learning-based methods which rely on large-scale pre-trained weights cannot be trained from scratch, with very limited research addressing this issue. This paper proposes a novel cycle pixel difference convolution (CPDC), which effectively integrates image gradient information with modern convolution operations. Based on the CPDC, we develop a U-shape encoder-decoder model named CPD-Net, which is a purely end-to-end network. Additionally, to address the issue of edge thickness produced by most existing methods, we construct a multi-scale information enhancement module (MSEM) to enhance the discriminative ability of the model, thereby generating crisp and clean contour maps. Comprehensive experiments conducted on three standard benchmarks demonstrate that our method achieves competitive performance on the BSDS500 dataset (ODS=0.813), NYUD-V2 (ODS=0.760), and BIPED dataset (ODS=0.898). Our approach provides a novel perspective for addressing these challenges in edge detection.
Related papers
- Learning to utilize image second-order derivative information for crisp edge detection [13.848361661516595]
Edge detection is a fundamental task in computer vision.
Recent top-performing edge detection methods tend to generate thick and noisy edge lines.
We propose a second-order derivative-based multi-scale contextual enhancement module (SDMCM) to help the model locate true edge pixels accurately.
We also construct a hybrid focal loss function (HFL) to alleviate the imbalanced distribution issue.
In the end, we propose a U-shape network named LUS-Net which is based on the SDMCM and BRM for edge detection.
arXiv Detail & Related papers (2024-06-09T13:25:02Z) - 3D Neural Edge Reconstruction [61.10201396044153]
We introduce EMAP, a new method for learning 3D edge representations with a focus on both lines and curves.
Our method implicitly encodes 3D edge distance and direction in Unsigned Distance Functions (UDF) from multi-view edge maps.
On top of this neural representation, we propose an edge extraction algorithm that robustly abstracts 3D edges from the inferred edge points and their directions.
arXiv Detail & Related papers (2024-05-29T17:23:51Z) - Geometric-aware Pretraining for Vision-centric 3D Object Detection [77.7979088689944]
We propose a novel geometric-aware pretraining framework called GAPretrain.
GAPretrain serves as a plug-and-play solution that can be flexibly applied to multiple state-of-the-art detectors.
We achieve 46.2 mAP and 55.5 NDS on the nuScenes val set using the BEVFormer method, with a gain of 2.7 and 2.1 points, respectively.
arXiv Detail & Related papers (2023-04-06T14:33:05Z) - Lightweight Monocular Depth Estimation with an Edge Guided Network [34.03711454383413]
We present a novel lightweight Edge Guided Depth Estimation Network (EGD-Net)
In particular, we start out with a lightweight encoder-decoder architecture and embed an edge guidance branch.
In order to aggregate the context information and edge attention features, we design a transformer-based feature aggregation module.
arXiv Detail & Related papers (2022-09-29T14:45:47Z) - Rethinking Unsupervised Neural Superpixel Segmentation [6.123324869194195]
unsupervised learning for superpixel segmentation via CNNs has been studied.
We propose three key elements to improve the efficacy of such networks.
By experimenting with the BSDS500 dataset, we find evidence to the significance of our proposal.
arXiv Detail & Related papers (2022-06-21T09:30:26Z) - Proximal PanNet: A Model-Based Deep Network for Pansharpening [11.695233311615498]
We propose a novel deep network for pansharpening by combining the model-based methodology with the deep learning method.
We unfold the iterative algorithm into a deep network, dubbed as Proximal PanNet, by learning the proximal operators using convolutional neural networks.
Experimental results on some benchmark datasets show that our network performs better than other advanced methods both quantitatively and qualitatively.
arXiv Detail & Related papers (2022-02-12T15:49:13Z) - Point Discriminative Learning for Unsupervised Representation Learning
on 3D Point Clouds [54.31515001741987]
We propose a point discriminative learning method for unsupervised representation learning on 3D point clouds.
We achieve this by imposing a novel point discrimination loss on the middle level and global level point features.
Our method learns powerful representations and achieves new state-of-the-art performance.
arXiv Detail & Related papers (2021-08-04T15:11:48Z) - Densely Nested Top-Down Flows for Salient Object Detection [137.74130900326833]
This paper revisits the role of top-down modeling in salient object detection.
It designs a novel densely nested top-down flows (DNTDF)-based framework.
In every stage of DNTDF, features from higher levels are read in via the progressive compression shortcut paths (PCSP)
arXiv Detail & Related papers (2021-02-18T03:14:02Z) - Compressive spectral image classification using 3D coded convolutional
neural network [12.67293744927537]
This paper develops a novel deep learning HIC approach based on measurements of coded-aperture snapshot spectral imagers (CASSI)
A new kind of deep learning strategy, namely 3D coded convolutional neural network (3D-CCNN), is proposed to efficiently solve for the classification problem.
The accuracy of classification is effectively improved by exploiting the synergy between the deep learning network and coded apertures.
arXiv Detail & Related papers (2020-09-23T15:05:57Z) - 2nd Place Scheme on Action Recognition Track of ECCV 2020 VIPriors
Challenges: An Efficient Optical Flow Stream Guided Framework [57.847010327319964]
We propose a data-efficient framework that can train the model from scratch on small datasets.
Specifically, by introducing a 3D central difference convolution operation, we proposed a novel C3D neural network-based two-stream framework.
It is proved that our method can achieve a promising result even without a pre-trained model on large scale datasets.
arXiv Detail & Related papers (2020-08-10T09:50:28Z) - Towards High Performance Human Keypoint Detection [87.1034745775229]
We find that context information plays an important role in reasoning human body configuration and invisible keypoints.
Inspired by this, we propose a cascaded context mixer ( CCM) which efficiently integrates spatial and channel context information.
To maximize CCM's representation capability, we develop a hard-negative person detection mining strategy and a joint-training strategy.
We present several sub-pixel refinement techniques for postprocessing keypoint predictions to improve detection accuracy.
arXiv Detail & Related papers (2020-02-03T02:24:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.