Cycle Pixel Difference Network for Crisp Edge Detection
- URL: http://arxiv.org/abs/2409.04272v1
- Date: Fri, 6 Sep 2024 13:28:05 GMT
- Title: Cycle Pixel Difference Network for Crisp Edge Detection
- Authors: Changsong Liu, Wei Zhang, Yanyan Liu, Mingyang Li, Wenlin Li, Yimeng Fan, Xiangnan Bai, Liang Zhangd,
- Abstract summary: This paper proposes a novel cycle pixel difference convolution (CPDC), which integrates image gradient information with modern convolution operations.
To address the issue of edge thickness produced by most existing methods, we construct a multi-scale information enhancement module (MSEM)
Our approach provides a novel perspective for addressing these challenges in edge detection.
- Score: 12.642567744605183
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Edge detection, as a fundamental task in computer vision, has garnered increasing attention. The advent of deep learning has significantly advanced this field. However, recent deep learning-based methods which rely on large-scale pre-trained weights cannot be trained from scratch, with very limited research addressing this issue. This paper proposes a novel cycle pixel difference convolution (CPDC), which effectively integrates image gradient information with modern convolution operations. Based on the CPDC, we develop a U-shape encoder-decoder model named CPD-Net, which is a purely end-to-end network. Additionally, to address the issue of edge thickness produced by most existing methods, we construct a multi-scale information enhancement module (MSEM) to enhance the discriminative ability of the model, thereby generating crisp and clean contour maps. Comprehensive experiments conducted on three standard benchmarks demonstrate that our method achieves competitive performance on the BSDS500 dataset (ODS=0.813), NYUD-V2 (ODS=0.760), and BIPED dataset (ODS=0.898). Our approach provides a novel perspective for addressing these challenges in edge detection.
Related papers
- Learning to utilize image second-order derivative information for crisp edge detection [16.152236524867078]
Edge detection is a fundamental task in computer vision.
Recent top-performing edge detection methods tend to generate thick and noisy edge lines.
We propose a second-order derivative-based multi-scale contextual enhancement module (SDMCM) to help the model locate true edge pixels accurately.
We also construct a hybrid focal loss function (HFL) to alleviate the imbalanced distribution issue.
In the end, we propose a U-shape network named LUS-Net which is based on the SDMCM and BRM for edge detection.
arXiv Detail & Related papers (2024-06-09T13:25:02Z) - Edge Detectors Can Make Deep Convolutional Neural Networks More Robust [25.871767605100636]
This paper first employs the edge detectors as layer kernels and designs a binary edge feature branch (BEFB) to learn the binary edge features.
The accuracy of the BEFB integrated models is better than the original ones on all datasets when facing FGSM, PGD, and C&W attacks.
The work in this paper for the first time shows it is feasible to enhance the robustness of DCNNs through combining both shape-like features and texture features.
arXiv Detail & Related papers (2024-02-26T10:54:26Z) - Practical Edge Detection via Robust Collaborative Learning [11.176517889212015]
Edge detection is a core component in a wide range of visionoriented tasks.
To achieve the goal, two key issues should be concerned.
How to mitigate deep edge models from inefficient pre-trained backbones.
How to liberate the negative influence from noisy or even wrong labels in training data.
arXiv Detail & Related papers (2023-08-27T12:12:27Z) - Introducing Depth into Transformer-based 3D Object Detection [24.224177932086455]
We present a Depth-Aware Transformer framework designed for camera-based 3D detection.
We show that DAT achieves a significant improvement of +2.8 NDS on nuScenes val under the same settings.
When using pre-trained VoVNet-99 as the backbone, DAT achieves strong results of 60.0 NDS and 51.5 mAP on nuScenes test.
arXiv Detail & Related papers (2023-02-25T06:28:32Z) - Point-to-Voxel Knowledge Distillation for LiDAR Semantic Segmentation [74.67594286008317]
This article addresses the problem of distilling knowledge from a large teacher model to a slim student network for LiDAR semantic segmentation.
We propose the Point-to-Voxel Knowledge Distillation (PVD), which transfers the hidden knowledge from both point level and voxel level.
arXiv Detail & Related papers (2022-06-05T05:28:32Z) - Pyramid Grafting Network for One-Stage High Resolution Saliency
Detection [29.013012579688347]
We propose a one-stage framework called Pyramid Grafting Network (PGNet) to extract features from different resolution images independently.
An attention-based Cross-Model Grafting Module (CMGM) is proposed to enable CNN branch to combine broken detailed information more holistically.
We contribute a new Ultra-High-Resolution Saliency Detection dataset UHRSD, containing 5,920 images at 4K-8K resolutions.
arXiv Detail & Related papers (2022-04-11T12:22:21Z) - Weakly Supervised Change Detection Using Guided Anisotropic Difusion [97.43170678509478]
We propose original ideas that help us to leverage such datasets in the context of change detection.
First, we propose the guided anisotropic diffusion (GAD) algorithm, which improves semantic segmentation results.
We then show its potential in two weakly-supervised learning strategies tailored for change detection.
arXiv Detail & Related papers (2021-12-31T10:03:47Z) - Disentangle Your Dense Object Detector [82.22771433419727]
Deep learning-based dense object detectors have achieved great success in the past few years and have been applied to numerous multimedia applications such as video understanding.
However, the current training pipeline for dense detectors is compromised to lots of conjunctions that may not hold.
We propose Disentangled Dense Object Detector (DDOD), in which simple and effective disentanglement mechanisms are designed and integrated into the current state-of-the-art detectors.
arXiv Detail & Related papers (2021-07-07T00:52:16Z) - SelfVoxeLO: Self-supervised LiDAR Odometry with Voxel-based Deep Neural
Networks [81.64530401885476]
We propose a self-supervised LiDAR odometry method, dubbed SelfVoxeLO, to tackle these two difficulties.
Specifically, we propose a 3D convolution network to process the raw LiDAR data directly, which extracts features that better encode the 3D geometric patterns.
We evaluate our method's performances on two large-scale datasets, i.e., KITTI and Apollo-SouthBay.
arXiv Detail & Related papers (2020-10-19T09:23:39Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
We propose a method for effective and efficient multispectral fusion of the two modalities in an adapted single-stage anchor-free base architecture.
We aim at learning pedestrian representations based on object center and scale rather than direct bounding box predictions.
Results show our method's effectiveness in detecting small-scaled pedestrians.
arXiv Detail & Related papers (2020-08-19T13:13:01Z) - Searching Central Difference Convolutional Networks for Face
Anti-Spoofing [68.77468465774267]
Face anti-spoofing (FAS) plays a vital role in face recognition systems.
Most state-of-the-art FAS methods rely on stacked convolutions and expert-designed network.
Here we propose a novel frame level FAS method based on Central Difference Convolution (CDC)
arXiv Detail & Related papers (2020-03-09T12:48:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.