CoxKAN: Kolmogorov-Arnold Networks for Interpretable, High-Performance Survival Analysis
- URL: http://arxiv.org/abs/2409.04290v1
- Date: Fri, 6 Sep 2024 13:59:58 GMT
- Title: CoxKAN: Kolmogorov-Arnold Networks for Interpretable, High-Performance Survival Analysis
- Authors: William Knottenbelt, Zeyu Gao, Rebecca Wray, Woody Zhidong Zhang, Jiashuai Liu, Mireia Crispin-Ortuzar,
- Abstract summary: Kolmogorov-Arnold Networks (KANs) were recently proposed as an interpretable and accurate alternative to multi-layer perceptrons (MLPs)
We introduce CoxKAN, a Cox proportional hazards Kolmogorov-Arnold Network for interpretable, high-performance survival analysis.
- Score: 0.3213991044370425
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Survival analysis is a branch of statistics used for modeling the time until a specific event occurs and is widely used in medicine, engineering, finance, and many other fields. When choosing survival models, there is typically a trade-off between performance and interpretability, where the highest performance is achieved by black-box models based on deep learning. This is a major problem in fields such as medicine where practitioners are reluctant to blindly trust black-box models to make important patient decisions. Kolmogorov-Arnold Networks (KANs) were recently proposed as an interpretable and accurate alternative to multi-layer perceptrons (MLPs). We introduce CoxKAN, a Cox proportional hazards Kolmogorov-Arnold Network for interpretable, high-performance survival analysis. We evaluate the proposed CoxKAN on 4 synthetic datasets and 9 real medical datasets. The synthetic experiments demonstrate that CoxKAN accurately recovers interpretable symbolic formulae for the hazard function, and effectively performs automatic feature selection. Evaluation on the 9 real datasets show that CoxKAN consistently outperforms the Cox proportional hazards model and achieves performance that is superior or comparable to that of tuned MLPs. Furthermore, we find that CoxKAN identifies complex interactions between predictor variables that would be extremely difficult to recognise using existing survival methods, and automatically finds symbolic formulae which uncover the precise effect of important biomarkers on patient risk.
Related papers
- SeqRisk: Transformer-augmented latent variable model for improved survival prediction with longitudinal data [4.1476925904032464]
We propose SeqRisk, a method that combines variational autoencoder (VAE) or longitudinal VAE (LVAE) with a transformer encoder and Cox proportional hazards module for risk prediction.
We demonstrate that SeqRisk performs competitively compared to existing approaches on both simulated and real-world datasets.
arXiv Detail & Related papers (2024-09-19T12:35:25Z) - Survival modeling using deep learning, machine learning and statistical methods: A comparative analysis for predicting mortality after hospital admission [9.719996519981333]
We conducted a comparative study of several survival analysis methods, including Cox proportional hazards (CoxPH), stepwise CoxPH, elastic net penalized Cox model, and GBM learning.
As a case study, we performed a retrospective analysis of patients admitted through the emergency department of a tertiary hospital from 2017 to 2019.
The results of the C-index indicate that deep learning achieved comparable performance, with DeepSurv producing the best discrimination.
arXiv Detail & Related papers (2024-03-04T10:46:02Z) - Interpretable Survival Analysis for Heart Failure Risk Prediction [50.64739292687567]
We propose a novel survival analysis pipeline that is both interpretable and competitive with state-of-the-art survival models.
Our pipeline achieves state-of-the-art performance and provides interesting and novel insights about risk factors for heart failure.
arXiv Detail & Related papers (2023-10-24T02:56:05Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - FastCPH: Efficient Survival Analysis for Neural Networks [57.03275837523063]
We propose FastCPH, a new method that runs in linear time and supports both the standard Breslow and Efron methods for tied events.
We also demonstrate the performance of FastCPH combined with LassoNet, a neural network that provides interpretability through feature sparsity.
arXiv Detail & Related papers (2022-08-21T03:35:29Z) - A Federated Cox Model with Non-Proportional Hazards [8.98624781242271]
Recent research has shown the potential for neural networks to improve upon classical survival models such as the Cox model.
We present a federated Cox model that accommodates this data setting and relaxes the proportional hazards assumption.
We experiment with publicly available clinical datasets and demonstrate that the federated model is able to perform as well as a standard model.
arXiv Detail & Related papers (2022-07-11T17:58:54Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Deep Cox Mixtures for Survival Regression [11.64579638651557]
We describe a new approach for survival analysis regression models, based on learning mixtures of Cox regressions to model individual survival distributions.
We perform experiments on multiple real world datasets, and look at the mortality rates of patients across ethnicity and gender.
arXiv Detail & Related papers (2021-01-16T22:41:22Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - A General Framework for Survival Analysis and Multi-State Modelling [70.31153478610229]
We use neural ordinary differential equations as a flexible and general method for estimating multi-state survival models.
We show that our model exhibits state-of-the-art performance on popular survival data sets and demonstrate its efficacy in a multi-state setting.
arXiv Detail & Related papers (2020-06-08T19:24:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.