Comparison of the Cox proportional hazards model and Random Survival Forest algorithm for predicting patient-specific survival probabilities in clinical trial data
- URL: http://arxiv.org/abs/2502.03119v1
- Date: Wed, 05 Feb 2025 12:26:43 GMT
- Title: Comparison of the Cox proportional hazards model and Random Survival Forest algorithm for predicting patient-specific survival probabilities in clinical trial data
- Authors: Ricarda Graf, Susan Todd, M. Fazil Baksh,
- Abstract summary: Cox proportional hazards model is often used for model development in randomized controlled trials (RCT) with time-to-event outcomes.
Random survival forests (RSF) is a machine-learning algorithm known for its high predictive performance.
We conduct a comprehensive neutral comparison study to compare the predictive performance of Cox regression and RSF in real-world as well as simulated data.
- Score: 0.0
- License:
- Abstract: The Cox proportional hazards model is often used for model development in data from randomized controlled trials (RCT) with time-to-event outcomes. Random survival forests (RSF) is a machine-learning algorithm known for its high predictive performance. We conduct a comprehensive neutral comparison study to compare the predictive performance of Cox regression and RSF in real-world as well as simulated data. Performance is compared using multiple performance measures according to recommendations for the comparison of prognostic prediction models. We found that while the RSF usually outperforms the Cox model when using the $C$ index, Cox model predictions may be better calibrated. With respect to overall performance, the Cox model often exceeds the RSF in nonproportional hazards settings, while otherwise the RSF typically performs better especially for smaller sample sizes. Overall performance of the RSF is more affected by higher censoring rates, while overall performance of the Cox model suffers more from smaller sample sizes.
Related papers
- SeqRisk: Transformer-augmented latent variable model for improved survival prediction with longitudinal data [4.1476925904032464]
We propose SeqRisk, a method that combines variational autoencoder (VAE) or longitudinal VAE (LVAE) with a transformer encoder and Cox proportional hazards module for risk prediction.
We demonstrate that SeqRisk performs competitively compared to existing approaches on both simulated and real-world datasets.
arXiv Detail & Related papers (2024-09-19T12:35:25Z) - CoxKAN: Kolmogorov-Arnold Networks for Interpretable, High-Performance Survival Analysis [0.3213991044370425]
Kolmogorov-Arnold Networks (KANs) were recently proposed as an interpretable and accurate alternative to multi-layer perceptrons (MLPs)
We introduce CoxKAN, a Cox proportional hazards Kolmogorov-Arnold Network for interpretable, high-performance survival analysis.
arXiv Detail & Related papers (2024-09-06T13:59:58Z) - Risk and cross validation in ridge regression with correlated samples [72.59731158970894]
We provide training examples for the in- and out-of-sample risks of ridge regression when the data points have arbitrary correlations.
We demonstrate that in this setting, the generalized cross validation estimator (GCV) fails to correctly predict the out-of-sample risk.
We further extend our analysis to the case where the test point has nontrivial correlations with the training set, a setting often encountered in time series forecasting.
arXiv Detail & Related papers (2024-08-08T17:27:29Z) - Optimizing Cox Models with Stochastic Gradient Descent: Theoretical Foundations and Practical Guidances [9.745755948802499]
gradient descent (SGD) has recently been adapted to optimize Cox models.
We demonstrate that the SGD estimator targets an objective function that is batch-size-dependent.
We provide guidance for selecting batch sizes in SGD applications.
arXiv Detail & Related papers (2024-08-05T21:25:10Z) - High Precision Causal Model Evaluation with Conditional Randomization [10.23470075454725]
We introduce a novel low-variance estimator for causal error, dubbed as the pairs estimator.
By applying the same IPW estimator to both the model and true experimental effects, our estimator effectively cancels out the variance due to IPW and achieves a smaller variance.
Our method offers a simple yet powerful solution to evaluate causal inference models in conditional randomization settings without complicated modification of the IPW estimator itself.
arXiv Detail & Related papers (2023-11-03T13:22:27Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
An extremely boosted neural network (XBNet) is used to predict clinical deterioration (CD)
The XGBoost model obtained the best results in predicting CD among Brazilian hospitals' data.
arXiv Detail & Related papers (2022-12-17T23:29:14Z) - FastCPH: Efficient Survival Analysis for Neural Networks [57.03275837523063]
We propose FastCPH, a new method that runs in linear time and supports both the standard Breslow and Efron methods for tied events.
We also demonstrate the performance of FastCPH combined with LassoNet, a neural network that provides interpretability through feature sparsity.
arXiv Detail & Related papers (2022-08-21T03:35:29Z) - A Federated Cox Model with Non-Proportional Hazards [8.98624781242271]
Recent research has shown the potential for neural networks to improve upon classical survival models such as the Cox model.
We present a federated Cox model that accommodates this data setting and relaxes the proportional hazards assumption.
We experiment with publicly available clinical datasets and demonstrate that the federated model is able to perform as well as a standard model.
arXiv Detail & Related papers (2022-07-11T17:58:54Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Increasing the efficiency of randomized trial estimates via linear
adjustment for a prognostic score [59.75318183140857]
Estimating causal effects from randomized experiments is central to clinical research.
Most methods for historical borrowing achieve reductions in variance by sacrificing strict type-I error rate control.
arXiv Detail & Related papers (2020-12-17T21:10:10Z) - A General Framework for Survival Analysis and Multi-State Modelling [70.31153478610229]
We use neural ordinary differential equations as a flexible and general method for estimating multi-state survival models.
We show that our model exhibits state-of-the-art performance on popular survival data sets and demonstrate its efficacy in a multi-state setting.
arXiv Detail & Related papers (2020-06-08T19:24:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.