論文の概要: Towards Leveraging Contrastively Pretrained Neural Audio Embeddings for Recommender Tasks
- arxiv url: http://arxiv.org/abs/2409.09026v1
- Date: Fri, 13 Sep 2024 17:53:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-16 15:40:23.525694
- Title: Towards Leveraging Contrastively Pretrained Neural Audio Embeddings for Recommender Tasks
- Title(参考訳): 相対的に事前訓練されたニューラルオーディオ埋め込みのレバレッジに向けて
- Authors: Florian Grötschla, Luca Strässle, Luca A. Lanzendörfer, Roger Wattenhofer,
- Abstract要約: 音楽レコメンデータシステムは、しばしばネットワークベースのモデルを使用して、楽曲、アーティスト、ユーザー間の関係をキャプチャする。
新しい音楽作品やアーティストは、初期情報が不十分なため、コールドスタートの問題に直面することが多い。
これを解決するために、音楽から直接コンテンツベースの情報を抽出し、協調フィルタリングに基づく手法を強化する。
- 参考スコア(独自算出の注目度): 18.95453617434051
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Music recommender systems frequently utilize network-based models to capture relationships between music pieces, artists, and users. Although these relationships provide valuable insights for predictions, new music pieces or artists often face the cold-start problem due to insufficient initial information. To address this, one can extract content-based information directly from the music to enhance collaborative-filtering-based methods. While previous approaches have relied on hand-crafted audio features for this purpose, we explore the use of contrastively pretrained neural audio embedding models, which offer a richer and more nuanced representation of music. Our experiments demonstrate that neural embeddings, particularly those generated with the Contrastive Language-Audio Pretraining (CLAP) model, present a promising approach to enhancing music recommendation tasks within graph-based frameworks.
- Abstract(参考訳): 音楽レコメンデータシステムは、しばしばネットワークベースのモデルを使用して、楽曲、アーティスト、ユーザー間の関係をキャプチャする。
これらの関係は予測に貴重な洞察を与えるが、新しい音楽作品やアーティストは、初期情報が不十分なため、コールドスタートの問題に直面することが多い。
これを解決するために、音楽から直接コンテンツベースの情報を抽出し、協調フィルタリングに基づく手法を強化する。
従来のアプローチは手作りのオーディオ機能に頼っていたが、我々は、より豊かでニュアンスの高い音楽表現を提供する、対照的に事前訓練されたニューラルオーディオ埋め込みモデルの使用について検討した。
実験の結果,ニューラル埋め込み,特に Contrastive Language-Audio Pretraining (CLAP) モデルで生成したものは,グラフベースのフレームワーク内での音楽推薦タスクを強化するための有望なアプローチを示す。
関連論文リスト
- Comparative Analysis of Pretrained Audio Representations in Music Recommender Systems [0.0]
音楽情報検索 (MIR) は大量の音楽データに基づいて事前訓練された様々なモデルを提案する。
転送学習は、下流タスクの幅広い範囲で事前訓練されたバックエンドモデルの実証された効果を示す。
Music Recommender Systemsは、事前訓練されたモデルよりも、従来のエンドツーエンドのニューラルネットワーク学習を好む傾向がある。
論文 参考訳(メタデータ) (2024-09-13T17:03:56Z) - Enhancing Sequential Music Recommendation with Personalized Popularity Awareness [56.972624411205224]
本稿では、パーソナライズされた人気情報をシーケンシャルなレコメンデーションに組み込む新しいアプローチを提案する。
実験結果から、パーソナライズされた最もポピュラーなレコメンデータは、既存の最先端モデルよりも優れていることが示された。
論文 参考訳(メタデータ) (2024-09-06T15:05:12Z) - LARP: Language Audio Relational Pre-training for Cold-Start Playlist Continuation [49.89372182441713]
マルチモーダルコールドスタートプレイリスト継続モデルであるLARPを導入する。
我々のフレームワークはタスク固有の抽象化の段階を増大させており、イントラトラック(音声)コントラスト損失、トラックトラックコントラスト損失、トラックプレイリストコントラスト損失である。
論文 参考訳(メタデータ) (2024-06-20T14:02:15Z) - MeLFusion: Synthesizing Music from Image and Language Cues using Diffusion Models [57.47799823804519]
私たちは、ミュージシャンが映画の脚本だけでなく、視覚化を通して音楽を作る方法にインスピレーションを受けています。
本稿では,テキスト記述と対応する画像からの手がかりを効果的に利用して音楽を合成するモデルであるMeLFusionを提案する。
音楽合成パイプラインに視覚情報を加えることで、生成した音楽の質が大幅に向上することを示す。
論文 参考訳(メタデータ) (2024-06-07T06:38:59Z) - A Survey of Music Generation in the Context of Interaction [3.6522809408725223]
機械学習は、メロディーとポリフォニックの両方の曲の作曲と生成に成功している。
これらのモデルのほとんどは、ライブインタラクションによる人間と機械の共創には適していない。
論文 参考訳(メタデータ) (2024-02-23T12:41:44Z) - MusicRL: Aligning Music Generation to Human Preferences [62.44903326718772]
MusicRLは人間のフィードバックによって微調整された最初の音楽生成システムである。
ユーザに対してMusicLMをデプロイし,30,000対の選好からなる実質的なデータセットを収集する。
人間のフィードバックを大規模に組み込んだ最初のテキスト-音楽モデルであるMusicRL-Uを訓練する。
論文 参考訳(メタデータ) (2024-02-06T18:36:52Z) - Self-Supervised Contrastive Learning for Robust Audio-Sheet Music
Retrieval Systems [3.997809845676912]
自己指導型コントラスト学習は、実際の音楽コンテンツからの注釈付きデータの不足を軽減することができることを示す。
クロスモーダルなピース識別の高レベルなタスクにスニペットを埋め込む。
本研究では,実際の音楽データが存在する場合,検索品質が30%から100%に向上することが観察された。
論文 参考訳(メタデータ) (2023-09-21T14:54:48Z) - GETMusic: Generating Any Music Tracks with a Unified Representation and
Diffusion Framework [58.64512825534638]
シンボリック・ミュージック・ジェネレーションは、ユーザーが音楽を作るのに役立つ音符を作成することを目的としている。
私たちは「GETMusic」と呼ばれるフレームワークを紹介します。「GET'」は「GEnerate Music Tracks」の略です。
GETScoreは、音符をトークンとして表現し、2D構造でトークンを整理する。
提案する表現は,非自己回帰生成モデルと組み合わせて,任意のソース・ターゲットトラックの組み合わせでGETMusicに音楽を生成する。
論文 参考訳(メタデータ) (2023-05-18T09:53:23Z) - Exploring the Efficacy of Pre-trained Checkpoints in Text-to-Music
Generation Task [86.72661027591394]
テキスト記述から完全で意味論的に一貫したシンボリック音楽の楽譜を生成する。
テキスト・音楽生成タスクにおける自然言語処理のための公開チェックポイントの有効性について検討する。
実験結果から, BLEUスコアと編集距離の類似性において, 事前学習によるチェックポイントの使用による改善が統計的に有意であることが示唆された。
論文 参考訳(メタデータ) (2022-11-21T07:19:17Z) - Comparision Of Adversarial And Non-Adversarial LSTM Music Generative
Models [2.569647910019739]
この研究は、MIDIデータに基づいて、リカレントニューラルネットワーク音楽作曲家の敵対的および非敵対的な訓練を実装し、比較する。
この評価は, 対人訓練がより審美的に楽しむ音楽を生み出すことを示唆している。
論文 参考訳(メタデータ) (2022-11-01T20:23:49Z) - Detecting Generic Music Features with Single Layer Feedforward Network
using Unsupervised Hebbian Computation [3.8707695363745223]
著者らは、人気のあるオープンソース音楽コーパスから、そのような特徴に関する情報を抽出する。
彼らは同じデータセットを使用して、一層ニューラルネットワークに教師なしのヘビアン学習技術を適用する。
教師なしトレーニングアルゴリズムは、提案したニューラルネットワークを強化し、音楽特徴の検出を成功させるために90.36%の精度を達成する。
論文 参考訳(メタデータ) (2020-08-31T13:57:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。