論文の概要: Amortized Bayesian Workflow (Extended Abstract)
- arxiv url: http://arxiv.org/abs/2409.04332v1
- Date: Fri, 6 Sep 2024 15:09:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-09 15:34:51.330645
- Title: Amortized Bayesian Workflow (Extended Abstract)
- Title(参考訳): Amortized Bayesian Workflow (Extended Abstract)
- Authors: Marvin Schmitt, Chengkun Li, Aki Vehtari, Luigi Acerbi, Paul-Christian Bürkner, Stefan T. Radev,
- Abstract要約: 高速なアモータライズ推論とゴールド標準MCMC技術を統合し,速度と精度を両立させる適応ワークフローを提案する。
提案手法では,各データセットに対する推論手法の選択を導出するために,原則付き診断を用いる。
我々は,1000個の観測データセットを用いた一般化された極値問題に対するこの統合的手法の有効性を実証する。
- 参考スコア(独自算出の注目度): 13.070972788633915
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Bayesian inference often faces a trade-off between computational speed and sampling accuracy. We propose an adaptive workflow that integrates rapid amortized inference with gold-standard MCMC techniques to achieve both speed and accuracy when performing inference on many observed datasets. Our approach uses principled diagnostics to guide the choice of inference method for each dataset, moving along the Pareto front from fast amortized sampling to slower but guaranteed-accurate MCMC when necessary. By reusing computations across steps, our workflow creates synergies between amortized and MCMC-based inference. We demonstrate the effectiveness of this integrated approach on a generalized extreme value task with 1000 observed data sets, showing 90x time efficiency gains while maintaining high posterior quality.
- Abstract(参考訳): ベイズ推定はしばしば計算速度とサンプリング精度のトレードオフに直面している。
そこで本研究では,ゴールド標準MCMC技術と高速なアモータライズ推論を統合し,多くの観測データセットで推論を行う際の速度と精度を両立させる適応ワークフローを提案する。
提案手法では,各データセットに対する推論手法の選択を原則として,高速アモートサンプリングから遅いが正確なMCMCまで,パレートフロントに沿って移動させる。
ステップ間で計算を再利用することで、我々のワークフローは、アモールト化とMCMCベースの推論の相乗効果を生成する。
我々は,1000個の観測データセットを用いた一般化された極値タスクに対するこの統合手法の有効性を実証し,高い後部品質を維持しつつ90倍の時間効率向上を示した。
関連論文リスト
- Neural Flow Samplers with Shortcut Models [19.81513273510523]
流れに基づくサンプルは連続性方程式を満たす速度場を学習してサンプルを生成する。
重要サンプリングは近似を提供するが、高い分散に悩まされる。
論文 参考訳(メタデータ) (2025-02-11T07:55:41Z) - CoSTI: Consistency Models for (a faster) Spatio-Temporal Imputation [0.0]
CoSTIは、推論時間を劇的に削減しつつ、DDPMに匹敵する計算品質を達成するために一貫性トレーニングを採用している。
複数のデータセットとデータシナリオをまたいだCoSTIを評価し、拡散モデルと同等のパフォーマンスで、計算時間を最大98%削減することを示した。
論文 参考訳(メタデータ) (2025-01-31T18:14:28Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
我々は,計算効率が高く正確なモデルパラメータ推定とベイジアン潜在状態推定を提供する変分連続モンテカルロ法(VSMC)を構築した。
オンラインVSMCは、パラメータ推定と粒子提案適応の両方を効率よく、完全にオンザフライで実行することができる。
論文 参考訳(メタデータ) (2023-12-19T21:45:38Z) - Diffusion for Natural Image Matting [88.58577778234036]
DiffMatteは、画像マッチングの課題を克服するために設計されたソリューションである。
まず、DiffMatteはデコーダを複雑な結合されたマッティングネットワーク設計から切り離し、拡散プロセスのイテレーションで1つの軽量デコーダだけを含む。
第2に、均一な時間間隔を持つ自己整合トレーニング戦略を採用し、時間領域全体にわたるトレーニングと推論の間に一貫したノイズサンプリングを確保する。
論文 参考訳(メタデータ) (2023-12-10T15:28:56Z) - DYNAMITE: Dynamic Interplay of Mini-Batch Size and Aggregation Frequency
for Federated Learning with Static and Streaming Dataset [23.11152686493894]
Federated Learning(FL)は、異種エッジデバイスをコーディネートして、プライベートデータを共有せずにモデルトレーニングを実行する分散学習パラダイムである。
本稿では、バッチサイズと集約周波数の相互作用を利用して、動的FLトレーニングにおける収束、コスト、完了時間間のトレードオフをナビゲートする新しい解析モデルと最適化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-20T08:36:12Z) - Consistency Trajectory Models: Learning Probability Flow ODE Trajectory of Diffusion [56.38386580040991]
Consistency Trajectory Model (CTM) は Consistency Models (CM) の一般化である
CTMは、対戦訓練とスコアマッチング損失を効果的に組み合わせることで、パフォーマンスを向上させる。
CMとは異なり、CTMのスコア関数へのアクセスは、確立された制御可能/条件生成メソッドの採用を合理化することができる。
論文 参考訳(メタデータ) (2023-10-01T05:07:17Z) - Transport with Support: Data-Conditional Diffusion Bridges [18.933928516349397]
制約付き時系列データ生成タスクを解決するために,Iterative Smoothing Bridge (ISB)を導入する。
我々は,ISBが高次元データによく一般化し,計算効率が高く,中間時間と終時間における限界値の正確な推定値を提供することを示した。
論文 参考訳(メタデータ) (2023-01-31T13:50:16Z) - Learning Sampling Distributions for Model Predictive Control [36.82905770866734]
モデル予測制御(MPC)に対するサンプリングに基づくアプローチは、MPCに対する現代のアプローチの基盤となっている。
我々は、学習された分布を最大限に活用できるように、潜在空間における全ての操作を実行することを提案する。
具体的には、学習問題を双方向の最適化として捉え、バックプロパゲーションスルータイムでコントローラをトレーニングする方法を示す。
論文 参考訳(メタデータ) (2022-12-05T20:35:36Z) - Fast Variational AutoEncoder with Inverted Multi-Index for Collaborative
Filtering [59.349057602266]
変分オートエンコーダ (VAE) は, 協調フィルタリングの非線形手法として拡張されている。
内積に基づくソフトマックス確率を逆多重インデックスに基づいて分解する。
FastVAEはサンプリング品質と効率の両面で最先端のベースラインを上回っます。
論文 参考訳(メタデータ) (2021-09-13T08:31:59Z) - Straggler-Resilient Federated Learning: Leveraging the Interplay Between
Statistical Accuracy and System Heterogeneity [57.275753974812666]
フェデレーション学習は、データをローカルに保持しながら、クライアントのネットワークに分散したデータサンプルから学習する。
本稿では,学習手順を高速化するために,クライアントデータの統計的特徴を取り入れてクライアントを適応的に選択する,ストラグラー・レジリエントなフェデレーション学習手法を提案する。
論文 参考訳(メタデータ) (2020-12-28T19:21:14Z) - Towards Streaming Perception [70.68520310095155]
本稿では、リアルタイムオンライン知覚のための単一のメトリクスにレイテンシと精度を協調的に統合するアプローチを提案する。
この指標の背後にある重要な洞察は、瞬間ごとに認識スタック全体の出力を共同で評価することである。
本稿では,都市ビデオストリームにおけるオブジェクト検出とインスタンスセグメンテーションの具体的タスクに注目し,高品質で時間依存的なアノテーションを備えた新しいデータセットを寄贈する。
論文 参考訳(メタデータ) (2020-05-21T01:51:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。