論文の概要: A high-accuracy multi-model mixing retrosynthetic method
- arxiv url: http://arxiv.org/abs/2409.04335v1
- Date: Fri, 6 Sep 2024 15:11:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-09 15:24:36.128669
- Title: A high-accuracy multi-model mixing retrosynthetic method
- Title(参考訳): 高精度なマルチモデル混合レトロシンセティック法
- Authors: Shang Xiang, Lin Yao, Zhen Wang, Qifan Yu, Wentan Liu, Wentao Guo, Guolin Ke,
- Abstract要約: 本稿ではコンピュータ支援合成計画(CASP)に関する一般的な誤りについて述べる。
単段階モデルの精度を高めることを目的とした製品予測モデルを導入する。
- 参考スコア(独自算出の注目度): 12.734406599118365
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The field of computer-aided synthesis planning (CASP) has seen rapid advancements in recent years, achieving significant progress across various algorithmic benchmarks. However, chemists often encounter numerous infeasible reactions when using CASP in practice. This article delves into common errors associated with CASP and introduces a product prediction model aimed at enhancing the accuracy of single-step models. While the product prediction model reduces the number of single-step reactions, it integrates multiple single-step models to maintain the overall reaction count and increase reaction diversity. Based on manual analysis and large-scale testing, the product prediction model, combined with the multi-model ensemble approach, has been proven to offer higher feasibility and greater diversity.
- Abstract(参考訳): コンピュータ支援合成計画(CASP)の分野は近年急速に進歩し、様々なアルゴリズムベンチマークにおいて大きな進歩を遂げている。
しかし、化学者は実際にCASPを使用すると、多くの不可能な反応に遭遇することが多い。
この記事では、CASPに関連する一般的なエラーを掘り下げ、単一ステップモデルの精度を高めることを目的とした製品予測モデルを紹介します。
製品予測モデルはシングルステップ反応の数を減らすが、反応の総数を維持し、反応の多様性を高めるために複数のシングルステップモデルを統合する。
手動分析と大規模テストに基づいて、製品予測モデルは、マルチモデルアンサンブルアプローチと組み合わせて、より高い実現可能性と多様性を提供することが証明されている。
関連論文リスト
- Learning Chemical Reaction Representation with Reactant-Product Alignment [50.28123475356234]
本稿では,様々な有機反応関連タスクに適した新しい化学反応表現学習モデルであるモデルネームを紹介する。
反応物質と生成物との原子対応を統合することにより、反応中に生じる分子変換を識別し、反応機構の理解を深める。
反応条件を化学反応表現に組み込むアダプタ構造を設計し、様々な反応条件を処理し、様々なデータセットや下流タスク、例えば反応性能予測に適応できるようにした。
論文 参考訳(メタデータ) (2024-11-26T17:41:44Z) - Provable Statistical Rates for Consistency Diffusion Models [87.28777947976573]
最先端の性能にもかかわらず、拡散モデルは、多くのステップが伴うため、遅いサンプル生成で知られている。
本稿では, 整合性モデルに関する最初の統計理論に寄与し, 分散不整合最小化問題としてトレーニングを定式化している。
論文 参考訳(メタデータ) (2024-06-23T20:34:18Z) - Beyond Major Product Prediction: Reproducing Reaction Mechanisms with
Machine Learning Models Trained on a Large-Scale Mechanistic Dataset [10.968137261042715]
有機反応の機械的理解は、反応の発生、不純物予測、そして原則として反応発見を促進する。
いくつかの機械学習モデルは、反応生成物を予測するタスクに対処しようとしているが、反応機構を予測するための拡張は、対応する力学データセットの欠如によって妨げられている。
実験によって報告された反応物質と生成物の中間体を専門家の反応テンプレートを用いて入力し、その結果の5,184,184個の基本ステップに基づいて機械学習モデルを訓練することにより、そのようなデータセットを構築する。
論文 参考訳(メタデータ) (2024-03-07T15:26:23Z) - Multi-View Conformal Learning for Heterogeneous Sensor Fusion [0.12086712057375555]
異種センサ融合のためのマルチビュー・シングルビューコンフォメーションモデルの構築と試験を行った。
我々のモデルは、共形予測フレームワークに基づいているため、理論的な限界信頼保証を提供する。
また,複数ビューモデルが単一ビューモデルに比べて不確実性の低い予測セットを生成することを示した。
論文 参考訳(メタデータ) (2024-02-19T17:30:09Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
近似機械学習モデルの集合に対する競合予測の効果について検討する。
ラーショモン集合内のモデル間の係り受けに関する理論的結果を示す。
当社のアプローチは、コンシューマ向けアプリケーションにおいて、より予測し、削減し、混乱を避けるためにどのように使用できるかを示します。
論文 参考訳(メタデータ) (2024-02-12T16:15:25Z) - Model-Based RL for Mean-Field Games is not Statistically Harder than Single-Agent RL [57.745700271150454]
モデルに基づく関数近似を用いた平均フィールドゲーム(MFG)における強化学習のサンプル複雑性について検討した。
本稿では、モデルクラスの複雑性を特徴付けるためのより効果的な概念である部分モデルベースエルダー次元(P-MBED)を紹介する。
論文 参考訳(メタデータ) (2024-02-08T14:54:47Z) - Holistic chemical evaluation reveals pitfalls in reaction prediction
models [0.3065062372337749]
本稿では, より総合的な評価をめざして, 現状のアプローチに基づく新たな評価手法を提案する。
ChoRISOは、化学的に関連するシナリオを再現するために、複数の調整された分割と共に、キュレートされたデータセットである。
私たちの研究は、最終的に化学発見を加速できる堅牢な予測モデルへの道を開いた。
論文 参考訳(メタデータ) (2023-12-14T14:54:28Z) - Beyond the Typical: Modeling Rare Plausible Patterns in Chemical Reactions by Leveraging Sequential Mixture-of-Experts [42.9784548283531]
TransformerやVAEのような生成モデルは一般的に反応生成物を予測するために使用される。
反応物と電子再分配パターンのマッピング空間を分割・分散的に整理することを提案する。
論文 参考訳(メタデータ) (2023-10-07T03:18:26Z) - Hard Sample Matters a Lot in Zero-Shot Quantization [52.32914196337281]
ゼロショット量子化(ZSQ)は、完全精度モデルのトレーニング用データがアクセスできない場合に、ディープニューラルネットワークの圧縮と加速を約束する。
ZSQでは、合成サンプルを用いてネットワーク量子化を行うため、量子化モデルの性能は合成サンプルの品質に大きく依存する。
この問題に対処するために,HArdサンプル合成訓練(HAST)を提案する。
論文 参考訳(メタデータ) (2023-03-24T06:22:57Z) - Toward Development of Machine Learned Techniques for Production of
Compact Kinetic Models [0.0]
化学動力学モデルは燃焼装置の開発と最適化に欠かせない要素である。
本稿では、過度に再現され、最適化された化学動力学モデルを生成するための、新しい自動計算強化手法を提案する。
論文 参考訳(メタデータ) (2022-02-16T12:31:24Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。