Computing Electronic Correlation Energies using Linear Depth Quantum
Circuits
- URL: http://arxiv.org/abs/2207.03949v2
- Date: Tue, 9 Aug 2022 03:32:54 GMT
- Title: Computing Electronic Correlation Energies using Linear Depth Quantum
Circuits
- Authors: Chong Hian Chee, Adrian M. Mak, Daniel Leykam, Panagiotis Kl.
Barkoutsos, Dimitris G. Angelakis
- Abstract summary: We demonstrate a variational NISQ-friendly algorithm that generates a set of mean-field Hartree-Fock ansatzes.
We tested the algorithm on several small molecules, both with classical simulations and on cloud quantum processors.
As fidelities of quantum processors continue to improve our algorithm will enable the study of larger molecules.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Efficient computation of molecular energies is an exciting application of
quantum computing for quantum chemistry, but current noisy intermediate-scale
quantum (NISQ) devices can only execute shallow circuits, limiting existing
variational quantum algorithms, which require deep entangling quantum circuit
ansatzes to capture correlations, to small molecules. Here we demonstrate a
variational NISQ-friendly algorithm that generates a set of mean-field
Hartree-Fock (HF) ansatzes using multiple shallow circuits with depth linear in
the number of qubits to estimate electronic correlation energies via
perturbation theory up to the second order. We tested the algorithm on several
small molecules, both with classical simulations including noise models and on
cloud quantum processors, showing that it not only reproduces the equilibrium
molecular energies but it also captures the perturbative electronic correlation
effects at longer bond distances. As fidelities of quantum processors continue
to improve our algorithm will enable the study of larger molecules compared to
other approaches requiring higher-order polynomial circuit depth.
Related papers
- Analog Quantum Simulation of Coupled Electron-Nuclear Dynamics in Molecules [0.0]
We present the first analog quantum simulation approach for molecular vibronic dynamics in a pre-BO framework.
We show that our approach has exponential savings in resource and computational costs compared to the equivalent classical algorithms.
arXiv Detail & Related papers (2024-09-06T17:42:34Z) - Folded Spectrum VQE : A quantum computing method for the calculation of
molecular excited states [0.0]
Folded Spectrum (FS) method as extension to Variational Quantum Eigensolver (VQE) algorithm for computation of molecular excited states.
Inspired by the variance-based methods from the Quantum Monte Carlo literature, the FS method minimizes the energy variance, thus requiring a computationally expensive squared Hamiltonian.
We apply the FS-VQE method to small molecules for a significant reduction of the computational cost.
arXiv Detail & Related papers (2023-05-08T15:34:56Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - Orbital-optimized pair-correlated electron simulations on trapped-ion
quantum computers [0.471876092032107]
Variational quantum eigensolvers (VQE) are among the most promising approaches for solving electronic structure problems on quantum computers.
A critical challenge for VQE in practice is that one needs to strike a balance between the expressivity of the VQE ansatz versus the number of quantum gates required to implement the ansatz.
We run end-to-end VQE algorithms with up to 12 qubits and 72 variational parameters - the largest full VQE simulation with a correlated wave function on quantum hardware.
arXiv Detail & Related papers (2022-12-05T18:40:54Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Variational Quantum Computation of Molecular Linear Response Properties
on a Superconducting Quantum Processor [20.69554086981598]
We introduce a pragmatic variational quantum response (VQR) algorithm for response properties, which circumvents the need for deep quantum circuits.
We report the first simulation of linear response properties of molecules including dynamic polarizabilities and absorption spectra on a superconducting quantum processor.
arXiv Detail & Related papers (2022-01-07T12:24:03Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Coarse grained intermolecular interactions on quantum processors [0.0]
We develop a coarse-grained representation of the electronic response that is ideally suited for determining the ground state of weakly interacting molecules.
We demonstrate our method on IBM superconducting quantum processors.
We conclude that current-generation quantum hardware is capable of probing energies in this weakly bound but nevertheless chemically ubiquitous and biologically important regime.
arXiv Detail & Related papers (2021-10-03T09:56:47Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.