Constrained local Hamiltonians: quantum generalizations of Vertex Cover
- URL: http://arxiv.org/abs/2409.04433v1
- Date: Fri, 6 Sep 2024 17:55:30 GMT
- Title: Constrained local Hamiltonians: quantum generalizations of Vertex Cover
- Authors: Ojas Parekh, Chaithanya Rayudu, Kevin Thompson,
- Abstract summary: We study approximation algorithms for constrained local Hamiltonian problems using the well-studied classical Vertex Cover problem as inspiration.
We show TVC is StoqMA-hard and develop an approximation algorithm for it based on a quantum generalization of the classical local ratio method.
- Score: 0.8056359341994941
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent successes in producing rigorous approximation algorithms for local Hamiltonian problems such as Quantum Max Cut have exploited connections to unconstrained classical discrete optimization problems. We initiate the study of approximation algorithms for constrained local Hamiltonian problems, using the well-studied classical Vertex Cover problem as inspiration. We consider natural quantum generalizations of Vertex Cover, and one of them, called Transverse Vertex Cover (TVC), is equivalent to the PXP model with additional 1-local Pauli-Z terms. We show TVC is StoqMA-hard and develop an approximation algorithm for it based on a quantum generalization of the classical local ratio method. This results in a simple linear-time classical approximation algorithm that does not depend on solving a convex relaxation. We also demonstrate our quantum local ratio method on a traditional unconstrained quantum local Hamiltonian version of Vertex Cover which is equivalent to the anti-ferromagnetic transverse field Ising model.
Related papers
- Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - Hybrid Quantum-Classical Multilevel Approach for Maximum Cuts on Graphs [1.7720089167719628]
We introduce a scalable hybrid multilevel approach to solve large instances of Max-Cut.
We show that using QAOA within our framework is comparable to classical approaches.
arXiv Detail & Related papers (2023-09-15T23:54:46Z) - First Order Methods with Markovian Noise: from Acceleration to Variational Inequalities [91.46841922915418]
We present a unified approach for the theoretical analysis of first-order variation methods.
Our approach covers both non-linear gradient and strongly Monte Carlo problems.
We provide bounds that match the oracle strongly in the case of convex method optimization problems.
arXiv Detail & Related papers (2023-05-25T11:11:31Z) - A quantum advantage over classical for local max cut [48.02822142773719]
Quantum optimization approximation algorithm (QAOA) has a computational advantage over comparable local classical techniques on degree-3 graphs.
Results hint that even small-scale quantum computation, which is relevant to the current state-of the art quantum hardware, could have significant advantages over comparably simple classical.
arXiv Detail & Related papers (2023-04-17T16:42:05Z) - Lower bounds for adiabatic quantum algorithms by quantum speed limits [0.0]
We introduce a framework for estimating lower bounds on the runtime of adiabatic quantum algorithms.
We analytically obtain lower bounds on adiabatic algorithms for finding k-clique in random graphs.
arXiv Detail & Related papers (2022-07-04T17:36:58Z) - Nonconvex Stochastic Scaled-Gradient Descent and Generalized Eigenvector
Problems [98.34292831923335]
Motivated by the problem of online correlation analysis, we propose the emphStochastic Scaled-Gradient Descent (SSD) algorithm.
We bring these ideas together in an application to online correlation analysis, deriving for the first time an optimal one-time-scale algorithm with an explicit rate of local convergence to normality.
arXiv Detail & Related papers (2021-12-29T18:46:52Z) - Quantum algorithm for stochastic optimal stopping problems with
applications in finance [60.54699116238087]
The famous least squares Monte Carlo (LSM) algorithm combines linear least square regression with Monte Carlo simulation to approximately solve problems in optimal stopping theory.
We propose a quantum LSM based on quantum access to a process, on quantum circuits for computing the optimal stopping times, and on quantum techniques for Monte Carlo.
arXiv Detail & Related papers (2021-11-30T12:21:41Z) - Beating Random Assignment for Approximating Quantum 2-Local Hamiltonian
Problems [3.553493344868414]
k-Local Hamiltonian problem is a generalization of classical constraint satisfaction problems (k-CSP)
For strictly quadratic instances, which are maximally entangled instances, we provide a classical 0.764-time 0.764-approximation.
We conjecture these are the hardest instances to approximate.
Our work employs recently developed techniques for analyzing classical approximations of CSPs and is intended to be accessible to both quantum information scientists and classical computer scientists.
arXiv Detail & Related papers (2020-12-22T20:41:34Z) - Quantum Assisted Eigensolver [0.0]
We propose a hybrid quantum-classical algorithm for approxing the ground state and ground state energy of a Hamiltonian.
The output from the quantum part of the algorithm is utilized as input for the classical computer.
arXiv Detail & Related papers (2020-09-23T08:33:18Z) - Gradient-Free Methods for Saddle-Point Problem [125.99533416395765]
We generalize the approach Gasnikov et. al., 2017, which allows to solve (stochastic) convex optimization problems with an inexact gradient-free oracle.
Our approach reduces $fracnlog n$ times the required number of oracle calls.
In the second part of the paper, we analyze the case when such an assumption cannot be made, we propose a general approach on how to modernize the method to solve this problem.
arXiv Detail & Related papers (2020-05-12T16:44:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.