論文の概要: Accelerating Training with Neuron Interaction and Nowcasting Networks
- arxiv url: http://arxiv.org/abs/2409.04434v2
- Date: Thu, 3 Oct 2024 17:57:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 23:00:54.652440
- Title: Accelerating Training with Neuron Interaction and Nowcasting Networks
- Title(参考訳): ニューロン相互作用とニューキャスティングネットワークによるトレーニングの高速化
- Authors: Boris Knyazev, Abhinav Moudgil, Guillaume Lajoie, Eugene Belilovsky, Simon Lacoste-Julien,
- Abstract要約: 学習可能な更新ルールは、トレーニングや使用に費用がかかり不安定になる可能性がある。
We propose NiNo to accelerate training based on weight nowcaster network (WNNs)。
- 参考スコア(独自算出の注目度): 34.14695001650589
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural network training can be accelerated when a learnable update rule is used in lieu of classic adaptive optimizers (e.g. Adam). However, learnable update rules can be costly and unstable to train and use. Recently, Jang et al. (2023) proposed a simpler approach to accelerate training based on weight nowcaster networks (WNNs). In their approach, Adam is used for most of the optimization steps and periodically, only every few steps, a WNN nowcasts (predicts near future) parameters. We improve WNNs by proposing neuron interaction and nowcasting (NiNo) networks. In contrast to WNNs, NiNo leverages neuron connectivity and graph neural networks to more accurately nowcast parameters. We further show that in some networks, such as Transformers, modeling neuron connectivity accurately is challenging. We address this and other limitations, which allows NiNo to accelerate Adam training by up to 50% in vision and language tasks.
- Abstract(参考訳): 古典的な適応オプティマイザ(例えばAdam)の代わりに学習可能な更新ルールを使用すると、ニューラルネットワークのトレーニングが加速される。
しかし、学習可能な更新ルールは、トレーニングや使用に費用がかかり不安定になる可能性がある。
最近、Jang et al (2023) は、ウェイト・ナウキャスターネットワーク(WNN)に基づくトレーニングを加速するための、よりシンプルなアプローチを提案した。
彼らのアプローチでは、Adamは最適化のほとんどのステップで使われ、定期的に、数ステップごとに、WNNがパラメータ(近い将来の予測)をキャストする。
我々は、ニューロンの相互作用やNiNo( nowcasting)ネットワークを提案することで、WNNを改善する。
WNNとは対照的に、NiNoはニューロン接続とグラフニューラルネットワークを活用してパラメータをより正確に検索する。
さらに,トランスフォーマーなどのネットワークでは,ニューロンの接続性を正確にモデル化することが困難であることを示す。
我々はこれとその他の制限に対処し、NiNoは視力と言語タスクの最大50%のAdamトレーニングを加速します。
関連論文リスト
- Fully Spiking Actor Network with Intra-layer Connections for
Reinforcement Learning [51.386945803485084]
エージェントが制御する多次元決定論的ポリシーを学習する必要があるタスクに焦点をあてる。
既存のスパイクベースのRL法は、SNNの出力として発火率を取り、完全に接続された層を通して連続的なアクション空間(つまり決定論的なポリシー)を表すように変換する。
浮動小数点行列操作を伴わない完全にスパイクするアクターネットワークを開発するため,昆虫に見られる非スパイク介在ニューロンからインスピレーションを得た。
論文 参考訳(メタデータ) (2024-01-09T07:31:34Z) - Skip Connections in Spiking Neural Networks: An Analysis of Their Effect
on Network Training [0.8602553195689513]
従来の人工ニューラルネットワーク(ANN)の代替として、スパイキングニューラルネットワーク(SNN)が注目を集めている。
本稿では,SNNにおけるスキップ接続の影響について検討し,ANNからSNNへのモデル適応を行うハイパーパラメータ最適化手法を提案する。
本研究では,SNNの位置,タイプ,回数を最適化することで,SNNの精度と効率を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-03-23T07:57:32Z) - Hybrid Spiking Neural Network Fine-tuning for Hippocampus Segmentation [3.1247096708403914]
人工ニューラルネットワーク(ANN)の代替としてスパイキングニューラルネットワーク(SNN)が登場している
本研究では,磁気共鳴画像からヒト海馬を抽出するためのハイブリッドSNNトレーニング手法を提案する。
論文 参考訳(メタデータ) (2023-02-14T20:18:57Z) - SPIDE: A Purely Spike-based Method for Training Feedback Spiking Neural
Networks [56.35403810762512]
イベントベースの計算を伴うスパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェアにおけるエネルギー効率の高い応用のために、脳にインスパイアされたモデルを約束している。
本研究では,最近提案されたトレーニング手法を拡張した平衡状態(SPIDE)に対するスパイクに基づく暗黙差分法について検討した。
論文 参考訳(メタデータ) (2023-02-01T04:22:59Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Accelerating spiking neural network training [1.6114012813668934]
スパイキングニューラルネットワーク(英: Spiking Neural Network、SNN)は、脳内の活動電位にインスパイアされた人工ネットワークの一種である。
本稿では,全ての逐次計算を排除し,ベクトル化された演算にのみ依存する単一スパイク/ニューラルオンSNNを直接訓練する手法を提案する。
提案手法は, 従来のSNNと比較して, 95.68 %以上のスパイク数削減を達成し, ニューロモルフィックコンピュータ上でのエネルギー要求を著しく低減する。
論文 参考訳(メタデータ) (2022-05-30T17:48:14Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - Improving Surrogate Gradient Learning in Spiking Neural Networks via
Regularization and Normalization [0.0]
スパイキングニューラルネットワーク(SNN)は、ディープラーニングで使用される古典的ネットワークとは異なる。
SNNは低消費電力のニューロモルフィックチップに実装できるため、AI技術にアピールしている。
論文 参考訳(メタデータ) (2021-12-13T15:24:33Z) - S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural
Networks via Guided Distribution Calibration [74.5509794733707]
本研究では, 実数値から, 最終予測分布上のバイナリネットワークへの誘導型学習パラダイムを提案する。
提案手法は,bnn上で5.515%の絶対利得で,単純なコントラスト学習ベースラインを向上できる。
提案手法は、単純なコントラスト学習ベースラインよりも大幅に改善され、多くの主流教師付きBNN手法に匹敵する。
論文 参考訳(メタデータ) (2021-02-17T18:59:28Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。