論文の概要: Pattern based learning and optimisation through pricing for bin packing problem
- arxiv url: http://arxiv.org/abs/2409.04456v1
- Date: Tue, 27 Aug 2024 17:03:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-15 05:31:27.785002
- Title: Pattern based learning and optimisation through pricing for bin packing problem
- Title(参考訳): ビンパッキング問題の価格設定によるパターンベース学習と最適化
- Authors: Huayan Zhang, Ruibin Bai, Tie-Yan Liu, Jiawei Li, Bingchen Lin, Jianfeng Ren,
- Abstract要約: 確率変数の分布のような問題条件が変化すると、以前の状況でうまく機能するパターンはより効果的になるかもしれないと論じる。
本研究では,パターンを効率的に同定し,各条件に対する値の動的定量化を行う新しい手法を提案する。
本手法は,制約を満たす能力と目的値に対する影響に基づいて,パターンの値の定量化を行う。
- 参考スコア(独自算出の注目度): 50.83768979636913
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As a popular form of knowledge and experience, patterns and their identification have been critical tasks in most data mining applications. However, as far as we are aware, no study has systematically examined the dynamics of pattern values and their reuse under varying conditions. We argue that when problem conditions such as the distributions of random variables change, the patterns that performed well in previous circumstances may become less effective and adoption of these patterns would result in sub-optimal solutions. In response, we make a connection between data mining and the duality theory in operations research and propose a novel scheme to efficiently identify patterns and dynamically quantify their values for each specific condition. Our method quantifies the value of patterns based on their ability to satisfy stochastic constraints and their effects on the objective value, allowing high-quality patterns and their combinations to be detected. We use the online bin packing problem to evaluate the effectiveness of the proposed scheme and illustrate the online packing procedure with the guidance of patterns that address the inherent uncertainty of the problem. Results show that the proposed algorithm significantly outperforms the state-of-the-art methods. We also analysed in detail the distinctive features of the proposed methods that lead to performance improvement and the special cases where our method can be further improved.
- Abstract(参考訳): 知識と経験の一般的な形態として、ほとんどのデータマイニングアプリケーションでは、パターンとその識別が重要なタスクとなっている。
しかし、我々の知る限り、パターン値とその再利用の力学を様々な条件下で体系的に検討する研究は行われていない。
確率変数の分布などの問題条件が変化すると、以前の状況でうまく実行されるパターンは効果が低下し、これらのパターンの採用が準最適解をもたらすと論じる。
そこで本研究では,データマイニングと運用研究における双対性理論の関連性について検討し,パターンを効率的に同定し,各条件の値を動的に定量化する手法を提案する。
提案手法は, 確率的制約を満たす能力と, 目的値に対する効果に基づいて, パターンの価値を定量化し, 高品質なパターンと組み合わせを検出する。
提案手法の有効性を評価するために,オンライン・ビン・パッキング問題を用い,問題の本質的な不確実性に対処するパターンのガイダンスを用いて,オンライン・パッキング手順を説明する。
その結果,提案アルゴリズムは最先端手法よりも優れていた。
また,性能改善につながる提案手法の特長や,提案手法をさらに改善できる特別な事例についても詳細に分析した。
関連論文リスト
- Provably Better Explanations with Optimized Aggregation of Feature Attributions [36.22433695108499]
ポストホックな説明に特徴属性を使用することは、不透明な機械学習モデルの予測を理解し検証する一般的なプラクティスである。
本稿では,特徴属性の最適凸結合を導出する新たな手法を提案する。
論文 参考訳(メタデータ) (2024-06-07T17:03:43Z) - Globally-Optimal Greedy Experiment Selection for Active Sequential
Estimation [1.1530723302736279]
逐次的に収集したデータの実験を適応的に選択するアクティブシーケンシャル推定の問題について検討する。
目標は、より正確なモデル推定のための実験選択ルールを設計することである。
そこで本稿では,グリーディ実験の選択手法のクラスを提案し,最大可能性の統計的解析を行う。
論文 参考訳(メタデータ) (2024-02-13T17:09:29Z) - Mining a Minimal Set of Behavioral Patterns using Incremental Evaluation [3.16536213610547]
行動パターンマイニングへの既存のアプローチには2つの制限がある。
まず、インクリメンタルな計算がパターン候補の生成にのみ組み込まれるため、スケーラビリティが制限される。
第二に、マイニングされたパターンに基づくプロセス分析は、実用的なアプリケーションシナリオで得られるパターンが圧倒的に多いため、限られた効果しか示さない。
論文 参考訳(メタデータ) (2024-02-05T11:41:37Z) - Consistent Explanations in the Face of Model Indeterminacy via
Ensembling [12.661530681518899]
この研究は、モデル不確定性の存在下で予測モデルに対して一貫した説明を提供することの課題に対処する。
これらのシナリオで提供される説明の一貫性を高めるためのアンサンブル手法を導入する。
本研究は,説明文の解釈において,モデル不確定性を考慮することの重要性を強調した。
論文 参考訳(メタデータ) (2023-06-09T18:45:43Z) - Best-Effort Adaptation [62.00856290846247]
本稿では, 試料再重み付け法に関する新しい理論的解析を行い, 試料再重み付け法を一様に保持する境界について述べる。
これらの境界が、我々が詳細に議論する学習アルゴリズムの設計を導く方法を示す。
本稿では,本アルゴリズムの有効性を実証する一連の実験結果について報告する。
論文 参考訳(メタデータ) (2023-05-10T00:09:07Z) - Better Understanding Differences in Attribution Methods via Systematic Evaluations [57.35035463793008]
モデル決定に最も影響を及ぼす画像領域を特定するために、ポストホック属性法が提案されている。
本稿では,これらの手法の忠実度をより確実に評価するための3つの新しい評価手法を提案する。
これらの評価手法を用いて、広範囲のモデルにおいて広く用いられている属性手法の長所と短所について検討する。
論文 参考訳(メタデータ) (2023-03-21T14:24:58Z) - Comparing Ordering Strategies For Process Discovery Using Synthesis
Rules [0.5330240017302619]
プロセス発見は、観察された振る舞いからプロセスモデルを学ぶことを目的としている。
本稿では,異なる順序付け戦略が発見モデルに与える影響について検討する。
論文 参考訳(メタデータ) (2023-01-04T16:17:52Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
同様の性能を実現するモデルセットに対して,予測公正性を特徴付けるフレームワークを開発する。
到達可能なグループレベルの予測格差の範囲を計算するためのトラクタブルアルゴリズムを提供します。
選択ラベル付きデータの実証的な課題に対処するために、我々のフレームワークを拡張します。
論文 参考訳(メタデータ) (2021-01-02T02:11:37Z) - Model-Augmented Actor-Critic: Backpropagating through Paths [81.86992776864729]
現在のモデルに基づく強化学習アプローチでは、単に学習されたブラックボックスシミュレータとしてモデルを使用する。
その微分可能性を利用してモデルをより効果的に活用する方法を示す。
論文 参考訳(メタデータ) (2020-05-16T19:18:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。