Here's Charlie! Realising the Semantic Web vision of Agents in the age of LLMs
- URL: http://arxiv.org/abs/2409.04465v1
- Date: Tue, 3 Sep 2024 10:32:47 GMT
- Title: Here's Charlie! Realising the Semantic Web vision of Agents in the age of LLMs
- Authors: Jesse Wright,
- Abstract summary: This paper presents our research towards a near-term future in which legal entities can entrust semi-autonomous AI-driven agents to carry out online interactions on their behalf.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents our research towards a near-term future in which legal entities, such as individuals and organisations can entrust semi-autonomous AI-driven agents to carry out online interactions on their behalf. The author's research concerns the development of semi-autonomous Web agents, which consult users if and only if the system does not have sufficient context or confidence to proceed working autonomously. This creates a user-agent dialogue that allows the user to teach the agent about the information sources they trust, their data-sharing preferences, and their decision-making preferences. Ultimately, this enables the user to maximise control over their data and decisions while retaining the convenience of using agents, including those driven by LLMs. In view of developing near-term solutions, the research seeks to answer the question: "How do we build a trustworthy and reliable network of semi-autonomous agents which represent individuals and organisations on the Web?". After identifying key requirements, the paper presents a demo for a sample use case of a generic personal assistant. This is implemented using (Notation3) rules to enforce safety guarantees around belief, data sharing and data usage and LLMs to allow natural language interaction with users and serendipitous dialogues between software agents.
Related papers
- AgentOccam: A Simple Yet Strong Baseline for LLM-Based Web Agents [52.13695464678006]
This study enhances an LLM-based web agent by simply refining its observation and action space.
AgentOccam surpasses the previous state-of-the-art and concurrent work by 9.8 (+29.4%) and 5.9 (+15.8%) absolute points respectively.
arXiv Detail & Related papers (2024-10-17T17:50:38Z) - Empowering Users in Digital Privacy Management through Interactive LLM-Based Agents [13.064730964328264]
This paper presents a novel application of large language models (LLMs) to enhance user comprehension of privacy policies through an interactive dialogue agent.
We demonstrate that LLMs significantly outperform traditional models in tasks like Data Practice Identification, Choice Identification, Policy Summarization, and Privacy Question Answering.
We introduce an innovative LLM-based agent that functions as an expert system for processing website privacy policies, guiding users through complex legal language without requiring them to pose specific questions.
arXiv Detail & Related papers (2024-10-15T02:16:59Z) - Persuasion Games using Large Language Models [0.0]
Large Language Models (LLMs) have emerged as formidable instruments capable of comprehending and producing human-like text.
This paper explores the potential of LLMs, to shape user perspectives and subsequently influence their decisions on particular tasks.
This capability finds applications in diverse domains such as Investment, Credit cards and Insurance.
arXiv Detail & Related papers (2024-08-28T15:50:41Z) - Hello Again! LLM-powered Personalized Agent for Long-term Dialogue [63.65128176360345]
We introduce a model-agnostic framework, the Long-term Dialogue Agent (LD-Agent)
It incorporates three independently tunable modules dedicated to event perception, persona extraction, and response generation.
The effectiveness, generality, and cross-domain capabilities of LD-Agent are empirically demonstrated.
arXiv Detail & Related papers (2024-06-09T21:58:32Z) - Air Gap: Protecting Privacy-Conscious Conversational Agents [44.04662124191715]
We introduce a novel threat model where adversarial third-party apps manipulate the context of interaction to trick LLM-based agents into revealing private information not relevant to the task at hand.
We introduce AirGapAgent, a privacy-conscious agent designed to prevent unintended data leakage by restricting the agent's access to only the data necessary for a specific task.
arXiv Detail & Related papers (2024-05-08T16:12:45Z) - OpenAgents: An Open Platform for Language Agents in the Wild [71.16800991568677]
We present OpenAgents, an open platform for using and hosting language agents in the wild of everyday life.
We elucidate the challenges and opportunities, aspiring to set a foundation for future research and development of real-world language agents.
arXiv Detail & Related papers (2023-10-16T17:54:53Z) - AgentCF: Collaborative Learning with Autonomous Language Agents for
Recommender Systems [112.76941157194544]
We propose AgentCF for simulating user-item interactions in recommender systems through agent-based collaborative filtering.
We creatively consider not only users but also items as agents, and develop a collaborative learning approach that optimize both kinds of agents together.
Overall, the optimized agents exhibit diverse interaction behaviors within our framework, including user-item, user-user, item-item, and collective interactions.
arXiv Detail & Related papers (2023-10-13T16:37:14Z) - Tag Your Fish in the Broken Net: A Responsible Web Framework for
Protecting Online Privacy and Copyright [30.05760947688919]
This paper introduces a user-controlled consent tagging framework for online data.
With this framework, users have the ability to tag their online data at the time of transmission, and subsequently, they can track and request the withdrawal of consent for their data from the data holders.
arXiv Detail & Related papers (2023-10-11T21:56:16Z) - Agents: An Open-source Framework for Autonomous Language Agents [98.91085725608917]
We consider language agents as a promising direction towards artificial general intelligence.
We release Agents, an open-source library with the goal of opening up these advances to a wider non-specialist audience.
arXiv Detail & Related papers (2023-09-14T17:18:25Z) - The Rise and Potential of Large Language Model Based Agents: A Survey [91.71061158000953]
Large language models (LLMs) are regarded as potential sparks for Artificial General Intelligence (AGI)
We start by tracing the concept of agents from its philosophical origins to its development in AI, and explain why LLMs are suitable foundations for agents.
We explore the extensive applications of LLM-based agents in three aspects: single-agent scenarios, multi-agent scenarios, and human-agent cooperation.
arXiv Detail & Related papers (2023-09-14T17:12:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.