Low Depth Phase Oracle Using a Parallel Piecewise Circuit
- URL: http://arxiv.org/abs/2409.04587v2
- Date: Tue, 8 Oct 2024 17:53:38 GMT
- Title: Low Depth Phase Oracle Using a Parallel Piecewise Circuit
- Authors: Zhu Sun, Gregory Boyd, Zhenyu Cai, Hamza Jnane, Balint Koczor, Richard Meister, Romy Minko, Benjamin Pring, Simon C. Benjamin, Nikitas Stamatopoulos,
- Abstract summary: We explore the important task of applying a phase $exp(i f(x))$ to a computational basis state $left| x right>$.
The closely related task of rotating a target qubit by an angle depending on $f(x)$ is also studied.
- Score: 3.629687485125086
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We explore the important task of applying a phase $exp(i f(x))$ to a computational basis state $\left| x \right>$. The closely related task of rotating a target qubit by an angle depending on $f(x)$ is also studied. Such operations are key in many quantum subroutines, and often the function $f$ can be well-approximated by a piecewise linear composition. Examples range from the application of diagonal Hamiltonian terms (such as the Coulomb interaction) in grid-based many-body simulation, to derivative pricing algorithms. Here we exploit a parallelisation of the piecewise approach so that all constituent elementary rotations are performed simultaneously, that is, we achieve a total rotation depth of one. Moreover, we explore the use of recursive catalyst 'towers' to implement these elementary rotations efficiently. Depending on the choice of implementation strategy, we find a depth as low as $O(log n + log S)$ for a register of $n$ qubits and a piecewise approximation of $S$ sections. In the limit of multiple repetitions of the oracle, we find that catalyst tower approaches have an $O(S \cdot n)$ T-count, whereas linear interpolation with QROM has an $O(n^{log_2(3)})$ T-count.
Related papers
- Multi-level quantum signal processing with applications to ground state preparation using fast-forwarded Hamiltonian evolution [0.8359711817610189]
Preparation of the ground state of a Hamiltonian $H$ with a large spectral radius has applications in many areas.
We develop a multi-level Quantum Signal Processing (QSP)-based algorithm that exploits the fast-forwarding feature.
arXiv Detail & Related papers (2024-06-04T08:09:51Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
We study the problem of PAC learning a linear combination of $k$ ReLU activations under the standard Gaussian distribution on $mathbbRd$ with respect to the square loss.
Our main result is an efficient algorithm for this learning task with sample and computational complexity $(dk/epsilon)O(k)$, whereepsilon>0$ is the target accuracy.
arXiv Detail & Related papers (2023-07-24T14:37:22Z) - Quantum Simulation of the First-Quantized Pauli-Fierz Hamiltonian [0.5097809301149342]
We show that a na"ive partitioning and low-order splitting formula can yield, through our divide and conquer formalism, superior scaling to qubitization for large $Lambda$.
We also give new algorithmic and circuit level techniques for gate optimization including a new way of implementing a group of multi-controlled-X gates.
arXiv Detail & Related papers (2023-06-19T23:20:30Z) - Spacetime-Efficient Low-Depth Quantum State Preparation with
Applications [93.56766264306764]
We show that a novel deterministic method for preparing arbitrary quantum states requires fewer quantum resources than previous methods.
We highlight several applications where this ability would be useful, including quantum machine learning, Hamiltonian simulation, and solving linear systems of equations.
arXiv Detail & Related papers (2023-03-03T18:23:20Z) - ReSQueing Parallel and Private Stochastic Convex Optimization [59.53297063174519]
We introduce a new tool for BFG convex optimization (SCO): a Reweighted Query (ReSQue) estimator for the gradient of a function convolved with a (Gaussian) probability density.
We develop algorithms achieving state-of-the-art complexities for SCO in parallel and private settings.
arXiv Detail & Related papers (2023-01-01T18:51:29Z) - DADAO: Decoupled Accelerated Decentralized Asynchronous Optimization [0.0]
DADAO is the first decentralized, accelerated, asynchronous, primal, first-order algorithm to minimize a sum of $L$-smooth and $mu$-strongly convex functions distributed over a given network of size $n$.
We show that our algorithm requires $mathcalO(nsqrtchisqrtfracLmulog(frac1epsilon)$ local and only $mathcalO(nsqrtchisqrtfracLmulog(
arXiv Detail & Related papers (2022-07-26T08:47:54Z) - Quantum Resources Required to Block-Encode a Matrix of Classical Data [56.508135743727934]
We provide circuit-level implementations and resource estimates for several methods of block-encoding a dense $Ntimes N$ matrix of classical data to precision $epsilon$.
We examine resource tradeoffs between the different approaches and explore implementations of two separate models of quantum random access memory (QRAM)
Our results go beyond simple query complexity and provide a clear picture into the resource costs when large amounts of classical data are assumed to be accessible to quantum algorithms.
arXiv Detail & Related papers (2022-06-07T18:00:01Z) - Complexity of zigzag sampling algorithm for strongly log-concave
distributions [6.336005544376984]
We study the computational complexity of zigzag sampling algorithm for strongly log-concave distributions.
We prove that the zigzag sampling algorithm achieves $varepsilon$ error in chi-square divergence with a computational cost equivalent to $Obigl.
arXiv Detail & Related papers (2020-12-21T03:10:21Z) - Quantum-classical algorithms for skewed linear systems with optimized
Hadamard test [10.386115383285288]
We discuss hybrid quantum-classical algorithms for skewed linear systems for over-determined and under-determined cases.
Our input model is such that the columns or rows of the matrix defining the linear system are given via quantum circuits of poly-logarithmic depth.
We present an algorithm for the special case of a factorized linear system with run time poly-logarithmic in the respective dimensions.
arXiv Detail & Related papers (2020-09-28T12:59:27Z) - Streaming Complexity of SVMs [110.63976030971106]
We study the space complexity of solving the bias-regularized SVM problem in the streaming model.
We show that for both problems, for dimensions of $frac1lambdaepsilon$, one can obtain streaming algorithms with spacely smaller than $frac1lambdaepsilon$.
arXiv Detail & Related papers (2020-07-07T17:10:00Z) - Continuous Submodular Maximization: Beyond DR-Submodularity [48.04323002262095]
We first prove a simple variant of the vanilla coordinate ascent, called Coordinate-Ascent+.
We then propose Coordinate-Ascent++, that achieves tight $(1-1/e-varepsilon)$-approximation guarantee while performing the same number of iterations.
The computation of each round of Coordinate-Ascent++ can be easily parallelized so that the computational cost per machine scales as $O(n/sqrtvarepsilon+nlog n)$.
arXiv Detail & Related papers (2020-06-21T06:57:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.