論文の概要: 3DGR-CAR: Coronary artery reconstruction from ultra-sparse 2D X-ray views with a 3D Gaussians representation
- arxiv url: http://arxiv.org/abs/2410.00404v1
- Date: Tue, 1 Oct 2024 05:00:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-05 05:46:46.190559
- Title: 3DGR-CAR: Coronary artery reconstruction from ultra-sparse 2D X-ray views with a 3D Gaussians representation
- Title(参考訳): 3DGR-CAR:3Dガウス表現を用いた超スパース2次元X線像からの冠動脈再建
- Authors: Xueming Fu, Yingtai Li, Fenghe Tang, Jun Li, Mingyue Zhao, Gao-Jun Teng, S. Kevin Zhou,
- Abstract要約: 3D冠動脈再建は,冠動脈疾患の診断,治療計画,手術ナビゲーションに重要である。
従来の再建技術は、しばしば多くの投射を必要とするが、スパースビューのX線投射からの再構成は、放射線線量を減らす潜在的方法である。
超スパースX線投影による冠動脈再建のための3次元ガウス表現法である3DGR-CARを提案する。
- 参考スコア(独自算出の注目度): 13.829610843207746
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reconstructing 3D coronary arteries is important for coronary artery disease diagnosis, treatment planning and operation navigation. Traditional reconstruction techniques often require many projections, while reconstruction from sparse-view X-ray projections is a potential way of reducing radiation dose. However, the extreme sparsity of coronary arteries in a 3D volume and ultra-limited number of projections pose significant challenges for efficient and accurate 3D reconstruction. To this end, we propose 3DGR-CAR, a 3D Gaussian Representation for Coronary Artery Reconstruction from ultra-sparse X-ray projections. We leverage 3D Gaussian representation to avoid the inefficiency caused by the extreme sparsity of coronary artery data and propose a Gaussian center predictor to overcome the noisy Gaussian initialization from ultra-sparse view projections. The proposed scheme enables fast and accurate 3D coronary artery reconstruction with only 2 views. Experimental results on two datasets indicate that the proposed approach significantly outperforms other methods in terms of voxel accuracy and visual quality of coronary arteries. The code will be available in https://github.com/windrise/3DGR-CAR.
- Abstract(参考訳): 3D冠動脈再建は,冠動脈疾患の診断,治療計画,手術ナビゲーションに重要である。
従来の再建技術は、しばしば多くの投射を必要とするが、スパースビューのX線投射からの再構成は、放射線線量を減らす潜在的方法である。
しかし, 冠状動脈の3次元容積, 超限の投射は, 効率的かつ正確な3次元再建に重要な課題となる。
そこで本研究では,3DGR-CAR(3D Gaussian Representation for Coronary Artery Reconstruction)を提案する。
超スパース・ビュー・プロジェクションからうるさいガウスの初期化を克服するガウス中心予測器を提案する。
提案手法により, 高速かつ高精度な3次元冠動脈再建が可能となった。
2つのデータセットによる実験結果から,本手法は冠状動脈のボクセル精度と視覚的品質において,他の方法よりも有意に優れていた。
コードはhttps://github.com/windrise/3DGR-CARで入手できる。
関連論文リスト
- NeCA: 3D Coronary Artery Tree Reconstruction from Two 2D Projections by Neural Implicit Representation [2.1771042711033997]
2D x線による冠動脈造影は, CVDの診断において最も広く採用されている画像モダリティである。
放射線限界のため、一般的には2つの血管造影プロジェクションのみを取得し、血管形状の限られた情報を提供する。
マルチレゾリューションハッシュエンコーダと差別化可能なコーンビームフォワードプロジェクタ層を用いた暗黙のニューラル表現に基づく,NeCAと呼ばれる自己教師型ディープラーニング手法を提案する。
論文 参考訳(メタデータ) (2024-09-06T20:08:21Z) - Deep Learning-based 3D Coronary Tree Reconstruction from Two 2D Non-simultaneous X-ray Angiography Projections [1.9929038355503754]
心臓血管疾患(CVD)は、世界中で最も多い死因である。
CVDの診断において,侵襲的X線冠動脈造影(ICA)は最も重要な画像モダリティの1つである。
ICAは一般的に2Dプロジェクションしか取得しないため、冠動脈の3D形状は解釈が困難である。
本研究では,非定常投射間における非剛性心・呼吸運動の補正のための新しい深層学習パイプラインを提案する。
論文 参考訳(メタデータ) (2024-07-19T18:18:17Z) - Learning 3D Gaussians for Extremely Sparse-View Cone-Beam CT Reconstruction [9.848266253196307]
Cone-Beam Computed Tomography (CBCT) は医用画像の撮影に欠かせない手法であるが、放射線照射が臨床応用に懸念をもたらす。
本稿では,3次元ガウス空間における特徴分布を表現するために3次元ガウス空間を利用する新しい再構成フレームワーク,DIF-Gaussianを提案する。
2つの公開データセット上でDIF-Gaussianを評価し,従来の最先端手法よりもはるかに優れた再構成性能を示した。
論文 参考訳(メタデータ) (2024-07-01T08:48:04Z) - R$^2$-Gaussian: Rectifying Radiative Gaussian Splatting for Tomographic Reconstruction [53.19869886963333]
3次元ガウススプラッティング(3DGS)は画像のレンダリングと表面再構成において有望な結果を示した。
本稿では,Sparse-viewトモグラフィ再構成のための3DGSベースのフレームワークであるR2$-Gaussianを紹介する。
論文 参考訳(メタデータ) (2024-05-31T08:39:02Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
深層学習に基づくニューラルネットワークを用いて,OCTの軸運動とコロナ運動のアーチファクトを1つのスキャンで補正する。
実験結果から, 提案手法は動作アーチファクトを効果的に補正し, 誤差が他の方法よりも小さいことを示す。
論文 参考訳(メタデータ) (2023-05-27T03:55:19Z) - Geometry-Aware Attenuation Learning for Sparse-View CBCT Reconstruction [53.93674177236367]
Cone Beam Computed Tomography (CBCT) は臨床画像撮影において重要な役割を担っている。
従来の方法では、高品質な3D CBCT画像の再構成には数百の2次元X線投影が必要である。
これにより、放射線線量を減らすため、スパースビューCBCT再構成への関心が高まっている。
本稿では,この問題を解決するために,新しい幾何対応エンコーダデコーダフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-26T14:38:42Z) - Improving 3D Imaging with Pre-Trained Perpendicular 2D Diffusion Models [52.529394863331326]
本稿では,2つの垂直2次元拡散モデルを用いて3次元逆問題の解法を提案する。
MRI Z軸超解像, 圧縮センシングMRI, スパースCTなどの3次元医用画像再構成作業に有効である。
論文 参考訳(メタデータ) (2023-03-15T08:28:06Z) - 3D Coronary Vessel Reconstruction from Bi-Plane Angiography using Graph
Convolutional Networks [1.8244763402770727]
3DAngioNetは、2つのビューから2D XCA画像を使用して高速な3Dコンテナメッシュ再構築を可能にする、新しいディープラーニング(DL)システムである。
提案手法は,効率的なB3-UNetセグメンテーションネットワークとプロジェクションジオメトリを用いて粗いメッシュテンプレートを学習し,グラフ畳み込みネットワークを用いて変形する。
論文 参考訳(メタデータ) (2023-02-28T17:46:25Z) - XraySyn: Realistic View Synthesis From a Single Radiograph Through CT
Priors [118.27130593216096]
放射線写真は、X線を用いて患者の内部解剖を視覚化し、3D情報を2次元平面に投影する。
私たちの知る限りでは、ラジオグラフィビューの合成に関する最初の研究である。
本手法は,3次元空間におけるX線撮影の理解を得ることにより,地中骨ラベルを使わずに,X線撮影による骨抽出と骨抑制に応用できることが示唆された。
論文 参考訳(メタデータ) (2020-12-04T05:08:53Z) - Tattoo tomography: Freehand 3D photoacoustic image reconstruction with
an optical pattern [49.240017254888336]
光音響トモグラフィ(PAT)は、形態学的および機能的組織特性の両方を解決することができる新しいイメージング技術である。
現在の欠点は、従来の2Dプローブによって提供される視野の制限である。
本研究では,外部追跡システムを必要としないPATデータの3次元再構成手法を提案する。
論文 参考訳(メタデータ) (2020-11-10T09:27:56Z) - Weakly-supervised 3D coronary artery reconstruction from two-view
angiographic images [4.722039838364292]
本稿では,3次元冠状動脈モデル構築のための対角的および生成的手法を提案する。
3D完全教師付き学習法と2D弱教師付き学習法により,最先端技術を上回る再現精度を得た。
論文 参考訳(メタデータ) (2020-03-26T11:41:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。