論文の概要: Enhancing Quantum Security over Federated Learning via Post-Quantum Cryptography
- arxiv url: http://arxiv.org/abs/2409.04637v1
- Date: Fri, 6 Sep 2024 22:02:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 21:25:10.679090
- Title: Enhancing Quantum Security over Federated Learning via Post-Quantum Cryptography
- Title(参考訳): ポスト量子暗号によるフェデレーション学習による量子セキュリティの強化
- Authors: Pingzhi Li, Tianlong Chen, Junyu Liu,
- Abstract要約: フェデレートラーニング(FL)は、エッジデバイスに機械学習モデルをデプロイするための標準的なアプローチの1つになっている。
現在のデジタルシグネチャアルゴリズムは、これらの通信されたモデルの更新を保護することができるが、大規模な量子コンピューティングの時代には量子セキュリティを確保することができない。
本研究では,これらの3つのNIST標準化PQCアルゴリズムがFLプロシージャ内のデジタル署名に与える影響を実験的に検討する。
- 参考スコア(独自算出の注目度): 38.77135346831741
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning (FL) has become one of the standard approaches for deploying machine learning models on edge devices, where private training data are distributed across clients, and a shared model is learned by aggregating locally computed updates from each client. While this paradigm enhances communication efficiency by only requiring updates at the end of each training epoch, the transmitted model updates remain vulnerable to malicious tampering, posing risks to the integrity of the global model. Although current digital signature algorithms can protect these communicated model updates, they fail to ensure quantum security in the era of large-scale quantum computing. Fortunately, various post-quantum cryptography algorithms have been developed to address this vulnerability, especially the three NIST-standardized algorithms - Dilithium, FALCON, and SPHINCS+. In this work, we empirically investigate the impact of these three NIST-standardized PQC algorithms for digital signatures within the FL procedure, covering a wide range of models, tasks, and FL settings. Our results indicate that Dilithium stands out as the most efficient PQC algorithm for digital signature in federated learning. Additionally, we offer an in-depth discussion of the implications of our findings and potential directions for future research.
- Abstract(参考訳): フェデレートラーニング(FL)は、エッジデバイスに機械学習モデルをデプロイする標準的なアプローチのひとつであり、プライベートトレーニングデータがクライアントに分散され、各クライアントからローカルに計算された更新を集約することによって、共有モデルが学習される。
このパラダイムは、各トレーニングの終了時にのみ更新を要求することで通信効率を向上させるが、送信されたモデル更新は悪意のある改ざんに弱いままであり、グローバルモデルの完全性にリスクを及ぼす。
現在のデジタルシグネチャアルゴリズムは、これらの通信されたモデルの更新を保護することができるが、大規模な量子コンピューティングの時代には量子セキュリティを確保することができない。
幸いなことに、この脆弱性に対処するために様々なポスト量子暗号アルゴリズムが開発されており、特に3つのNIST標準化アルゴリズム(ディリシウム、FALCON、SPHINCS+)がある。
本研究では,これらの3つのNIST標準化PQCアルゴリズムがFLプロシージャ内のデジタル署名に与える影響を実験的に検討し,幅広いモデル,タスク,FL設定について述べる。
この結果から,Dilithiumは,フェデレート学習におけるディジタル署名のPQCアルゴリズムとして最も効率的であることが示唆された。
さらに,本研究の意義と今後の方向性についても詳細に検討する。
関連論文リスト
- Q-SFT: Q-Learning for Language Models via Supervised Fine-Tuning [62.984693936073974]
価値に基づく強化学習は、幅広いマルチターン問題に対する効果的なポリシーを学ぶことができる。
現在の値ベースのRL法は、特に大規模な言語モデルの設定にスケールすることが困難であることが証明されている。
本稿では,これらの欠点に対処する新しいオフラインRLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-11-07T21:36:52Z) - Federated Learning with Quantum Computing and Fully Homomorphic Encryption: A Novel Computing Paradigm Shift in Privacy-Preserving ML [4.92218040320554]
フェデレートラーニング(Federated Learning)は、複数の学習クライアントがプライベートデータを公開せずにモデル知識を共有できるようにする、従来の方法に代わるプライバシ保護手法である。
この研究は、古典層と量子層の両方を統合するフェデレート学習ニューラルネットワークアーキテクチャに完全同型暗号化スキームを適用した。
論文 参考訳(メタデータ) (2024-09-14T01:23:26Z) - Security Concerns in Quantum Machine Learning as a Service [2.348041867134616]
量子機械学習(Quantum Machine Learning、QML)は、変分量子回路(VQC)を用いて機械学習タスクに取り組むアルゴリズムのカテゴリである。
近年の研究では、限られたトレーニングデータサンプルからQMLモデルを効果的に一般化できることが示されている。
QMLは、古典的および量子コンピューティングリソースの両方を利用するハイブリッドモデルである。
論文 参考訳(メタデータ) (2024-08-18T18:21:24Z) - PriRoAgg: Achieving Robust Model Aggregation with Minimum Privacy Leakage for Federated Learning [49.916365792036636]
フェデレートラーニング(FL)は、大規模分散ユーザデータを活用する可能性から、最近大きな勢いを増している。
送信されたモデル更新は、センシティブなユーザ情報をリークする可能性があり、ローカルなトレーニングプロセスの集中的な制御の欠如は、モデル更新に対する悪意のある操作の影響を受けやすいグローバルモデルを残します。
我々は、Lagrange符号化計算と分散ゼロ知識証明を利用した汎用フレームワークPriRoAggを開発し、集約されたプライバシを満たすとともに、幅広いロバストな集約アルゴリズムを実行する。
論文 参考訳(メタデータ) (2024-07-12T03:18:08Z) - EncCluster: Scalable Functional Encryption in Federated Learning through Weight Clustering and Probabilistic Filters [3.9660142560142067]
フェデレートラーニング(FL)は、アグリゲーションサーバにのみローカルモデルの更新を通信することで、分散デバイス間のモデルトレーニングを可能にする。
FLはモデル更新送信中に推論攻撃に弱いままである。
本稿では、重みクラスタリングによるモデル圧縮と、最近の分散型FEとプライバシ強化データエンコーディングを統合する新しい方法であるEncClusterを提案する。
論文 参考訳(メタデータ) (2024-06-13T14:16:50Z) - PEOPL: Characterizing Privately Encoded Open Datasets with Public Labels [59.66777287810985]
プライバシとユーティリティのための情報理論スコアを導入し、不誠実なユーザの平均パフォーマンスを定量化する。
次に、ランダムなディープニューラルネットワークの使用を動機付ける符号化スキームのファミリーを構築する際のプリミティブを理論的に特徴づける。
論文 参考訳(メタデータ) (2023-03-31T18:03:53Z) - Privacy-Preserving Federated Learning via System Immersion and Random
Matrix Encryption [4.258856853258348]
フェデレーション学習(FL)は、クライアントが中央集権的な(潜在的に敵対的な)サーバとデータを共有するのではなく、デバイス上でAIモデルをトレーニングする、コラボレーティブな分散学習のためのプライバシソリューションとして登場した。
本稿では,制御理論からの行列暗号とシステム浸漬ツールの相乗効果に基づいて,プライバシ保護フェデレーションラーニング(PPFL)フレームワークを提案する。
提案アルゴリズムは,クライアントのデータに関する情報を公開せずに,標準FLと同等の精度と収束率を無視できるコストで提供することを示す。
論文 参考訳(メタデータ) (2022-04-05T21:28:59Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
フェデレートラーニング(Federated Learning)により、多数のクライアントが、プライベートデータを共有することなく、ジョイントモデルをトレーニングできる。
クライアントのアップデートの機密性を保証するため、フェデレートラーニングシステムはセキュアなアグリゲーションを採用している。
悪意のあるクライアントに対する堅牢性を向上させるセキュアなフェデレート学習システムであるRoFLを提案する。
論文 参考訳(メタデータ) (2021-07-07T15:42:49Z) - CryptoSPN: Privacy-preserving Sum-Product Network Inference [84.88362774693914]
総生産ネットワーク(SPN)のプライバシ保護のためのフレームワークを提案する。
CryptoSPNは、中規模のSPNに対して秒の順序で高効率で正確な推論を行う。
論文 参考訳(メタデータ) (2020-02-03T14:49:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。