論文の概要: Exploring the Advances in Using Machine Learning to Identify Technical Debt and Self-Admitted Technical Debt
- arxiv url: http://arxiv.org/abs/2409.04662v1
- Date: Fri, 6 Sep 2024 23:58:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 21:14:48.254781
- Title: Exploring the Advances in Using Machine Learning to Identify Technical Debt and Self-Admitted Technical Debt
- Title(参考訳): 機械学習による技術的負債と自己充足的技術的負債の同定の進歩を探る
- Authors: Eric L. Melin, Nasir U. Eisty,
- Abstract要約: 本研究は,ソフトウェアプロジェクトにおける技術的負債と自己決定的技術的負債を検出する機械学習手法を用いた現在の研究状況について考察することを目的としている。
我々は2024年までの論文の文献レビューを行い、機械学習を用いた技術的負債と自己承認的技術的負債の識別について議論した。
以上の結果から,BERTモデルは他よりもはるかに効果的であることが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In software engineering, technical debt, signifying the compromise between short-term expediency and long-term maintainability, is being addressed by researchers through various machine learning approaches. This study seeks to provide a reflection on the current research landscape employing machine learning methods for detecting technical debt and self-admitted technical debt in software projects and compare the machine learning research about technical debt and self-admitted technical debt. We performed a literature review of studies published up to 2024 that discuss technical debt and self-admitted technical debt identification using machine learning. Our findings reveal the utilization of a diverse range of machine learning techniques, with BERT models proving significantly more effective than others. This study demonstrates that although the performance of techniques has improved over the years, no universally adopted approach reigns supreme. The results suggest prioritizing BERT techniques over others in future works.
- Abstract(参考訳): ソフトウェアエンジニアリングでは、短期間の緊急性と長期の保守性の間の妥協を示す技術的負債が、さまざまな機械学習アプローチを通じて研究者によって対処されている。
本研究は、ソフトウェアプロジェクトにおける技術的負債と自己許容技術的負債を検出する機械学習手法を用いた現在の研究状況の反映と、技術的負債と自己許容技術的負債に関する機械学習研究の比較を目的とする。
我々は2024年までの論文の文献レビューを行い、機械学習を用いた技術的負債と自己承認的技術的負債の識別について議論した。
以上の結果から,BERTモデルは他よりもはるかに効果的であることが示唆された。
本研究は, 技術性能が長年にわたって向上してきたが, 広く普及したアプローチが最優先事項であることを示す。
その結果,今後の研究においてBERT技術が他の技術よりも優先されることが示唆された。
関連論文リスト
- Improving the detection of technical debt in Java source code with an enriched dataset [12.07607688189035]
技術的負債(Technical debt, TD)とは、開発者が問題に対して迅速かつ簡単なソリューションを選択すると、追加の作業とコストが発生すること。
近年の研究では、ソースコードに埋め込まれたコメントを分析することで、SATD(Self-Admitted Technical Debts)の検出に焦点が当てられている。
コードコメントによって識別された最初のTDデータセットを、関連するソースコードとともにキュレートしました。
論文 参考訳(メタデータ) (2024-11-08T10:12:33Z) - Evaluating Time-Dependent Methods and Seasonal Effects in Code Technical Debt Prediction [6.616501747443831]
本研究は,時間依存手法と季節的影響を考慮した時間依存手法の効果を評価することを目的とする。
Javaで開発された31のオープンソースプロジェクトのコミット履歴を使って、11の予測モデルをトレーニングしました。
論文 参考訳(メタデータ) (2024-08-15T11:39:58Z) - Open Problems in Technical AI Governance [93.89102632003996]
テクニカルAIガバナンス(Technical AI Governance)は、AIの効果的なガバナンスを支援するための技術分析とツールである。
本論文は、AIガバナンスへの貢献を目指す技術研究者や研究資金提供者のためのリソースとして意図されている。
論文 参考訳(メタデータ) (2024-07-20T21:13:56Z) - Vulnerability Detection in Smart Contracts: A Comprehensive Survey [10.076412566428756]
本研究では、スマートコントラクトにおける脆弱性の検出と緩和を改善する機械学習技術の可能性を検討する。
2018年から2023年にかけて、IEEE、ACM、ScienceDirect、Scopus、Google Scholarといったデータベースから88の記事を分析しました。
その結果、KNN、RF、DT、XG-Boost、SVMといった古典的な機械学習技術は、脆弱性検出において静的ツールよりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-07-08T11:51:15Z) - Systematic literature review on forecasting and prediction of technical debt evolution [0.0]
技術的負債(英: Technical debt、TD)とは、ソフトウェア品質の妥協によって生じる追加コストのこと。
本研究の目的は,ソフトウェア工学における既存の知識を探求し,研究と産業におけるアプローチの洞察を得ることである。
論文 参考訳(メタデータ) (2024-06-17T18:50:37Z) - Charting a Path to Efficient Onboarding: The Role of Software
Visualization [49.1574468325115]
本研究は,ソフトウェアビジュアライゼーションツールを用いたマネージャ,リーダ,開発者の親しみやすさを探求することを目的としている。
本手法は, 質問紙調査と半構造化面接を用いて, 実践者から収集したデータの量的, 質的分析を取り入れた。
論文 参考訳(メタデータ) (2024-01-17T21:30:45Z) - Artificial Intelligence for Technical Debt Management in Software
Development [0.0]
ソフトウェア開発における技術的負債回避のためのAI駆動ツールの使用に関する既存の研究のレビュー。
AIはソフトウェア開発における技術的負債管理を大幅に改善する可能性がある、と提案する。
AIを開発プロセスに活用しようとするソフトウェア開発チームに対して,実践的なガイダンスを提供する。
論文 参考訳(メタデータ) (2023-06-16T21:59:22Z) - Machine Unlearning: A Survey [56.79152190680552]
プライバシ、ユーザビリティ、および/または忘れられる権利のために、特定のサンプルに関する情報をマシンアンラーニングと呼ばれるモデルから削除する必要がある特別なニーズが生まれている。
この新興技術は、その革新と実用性により、学者と産業の両方から大きな関心を集めている。
この複雑なトピックを分析したり、さまざまなシナリオで既存の未学習ソリューションの実現可能性を比較したりした研究はない。
この調査は、未学習のテクニックに関する卓越した問題と、新しい研究機会のための実現可能な方向性を強調して締めくくった。
論文 参考訳(メタデータ) (2023-06-06T10:18:36Z) - Knowledge-enhanced Neural Machine Reasoning: A Review [67.51157900655207]
既存の知識強化手法を2つの主要なカテゴリと4つのサブカテゴリに分類する新しい分類法を導入する。
我々は、現在のアプリケーションドメインを解明し、将来的な研究の展望について洞察を提供する。
論文 参考訳(メタデータ) (2023-02-04T04:54:30Z) - Knowledge as Invariance -- History and Perspectives of
Knowledge-augmented Machine Learning [69.99522650448213]
機械学習の研究は転換点にある。
研究の関心は、高度にパラメータ化されたモデルのパフォーマンス向上から、非常に具体的なタスクへとシフトしている。
このホワイトペーパーは、機械学習研究におけるこの新興分野の紹介と議論を提供する。
論文 参考訳(メタデータ) (2020-12-21T15:07:19Z) - Machine Learning for Software Engineering: A Systematic Mapping [73.30245214374027]
ソフトウェア開発業界は、現代のソフトウェアシステムを高度にインテリジェントで自己学習システムに移行するために、機械学習を急速に採用している。
ソフトウェアエンジニアリングライフサイクルの段階にわたって機械学習の採用について、現状を探求する包括的な研究は存在しない。
本研究は,機械学習によるソフトウェア工学(MLSE)分類を,ソフトウェア工学ライフサイクルのさまざまな段階に適用性に応じて,最先端の機械学習技術に分類するものである。
論文 参考訳(メタデータ) (2020-05-27T11:56:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。