NapTune: Efficient Model Tuning for Mood Classification using Previous Night's Sleep Measures along with Wearable Time-series
- URL: http://arxiv.org/abs/2409.04723v1
- Date: Sat, 7 Sep 2024 06:06:04 GMT
- Title: NapTune: Efficient Model Tuning for Mood Classification using Previous Night's Sleep Measures along with Wearable Time-series
- Authors: Debaditya Shome, Nasim Montazeri Ghahjaverestan, Ali Etemad,
- Abstract summary: Sleep is known to be a key factor in emotional regulation and overall mental health.
In this study, we explore the integration of sleep measures from the previous night into wearable-based mood recognition.
We propose NapTune, a novel prompt-tuning framework that utilizes sleep-related measures as additional inputs to a frozen pre-trained wearable time-series encoder.
- Score: 20.901278227023585
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Sleep is known to be a key factor in emotional regulation and overall mental health. In this study, we explore the integration of sleep measures from the previous night into wearable-based mood recognition. To this end, we propose NapTune, a novel prompt-tuning framework that utilizes sleep-related measures as additional inputs to a frozen pre-trained wearable time-series encoder by adding and training lightweight prompt parameters to each Transformer layer. Through rigorous empirical evaluation, we demonstrate that the inclusion of sleep data using NapTune not only improves mood recognition performance across different wearable time-series namely ECG, PPG, and EDA, but also makes it more sample-efficient. Our method demonstrates significant improvements over the best baselines and unimodal variants. Furthermore, we analyze the impact of adding sleep-related measures on recognizing different moods as well as the influence of individual sleep-related measures.
Related papers
- Clustering and Data Augmentation to Improve Accuracy of Sleep Assessment and Sleep Individuality Analysis [1.9662978733004597]
This study aims to construct a machine learning-based sleep assessment model providing evidence-based assessments, such as poor sleep due to frequent movement during sleep onset.
Extracting sleep sound events, deriving latent representations using VAE, clustering with GMM, and training LSTM for subjective sleep assessment achieved a high accuracy of 94.8% in distinguishing sleep satisfaction.
arXiv Detail & Related papers (2024-04-16T05:56:41Z) - A machine-learning sleep-wake classification model using a reduced
number of features derived from photoplethysmography and activity signals [0.0]
Photoplethys (mography) has been demonstrated to be an effective signal for sleep stage inference.
In this work, we present a machine learning sleep-wake classification model based on the eXtreme Gradient Boosting algorithm.
The performance of our method was comparable to current state-of-the-art methods with a Sensitivity of 91.15 $pm$ 1.16%, Specificity of 53.66 $pm$ 1.12%, F1-score of 83.88 $pm$ 0.56%, and Kappa of 48.0 $pm$ 0.86%.
arXiv Detail & Related papers (2023-08-07T13:43:19Z) - Sleep Model -- A Sequence Model for Predicting the Next Sleep Stage [18.059360820527687]
Sleep-stage classification using simple sensors, such as single-channel electroencephalography (EEG), electrooculography (EOG), electromyography (EMG) or electrocardiography (ECG) has gained substantial interest.
In this study, we proposed a sleep model that predicts the next sleep stage and used it to improve sleep classification accuracy.
arXiv Detail & Related papers (2023-02-17T07:37:54Z) - Sleep Activity Recognition and Characterization from Multi-Source
Passively Sensed Data [67.60224656603823]
Sleep Activity Recognition methods can provide indicators to assess, monitor, and characterize subjects' sleep-wake cycles and detect behavioral changes.
We propose a general method that continuously operates on passively sensed data from smartphones to characterize sleep and identify significant sleep episodes.
Thanks to their ubiquity, these devices constitute an excellent alternative data source to profile subjects' biorhythms in a continuous, objective, and non-invasive manner.
arXiv Detail & Related papers (2023-01-17T15:18:45Z) - Heterogeneous Hidden Markov Models for Sleep Activity Recognition from
Multi-Source Passively Sensed Data [67.60224656603823]
Psychiatric patients' passive activity monitoring is crucial to detect behavioural shifts in real-time.
Sleep Activity Recognition constitutes a behavioural marker to portray patients' activity cycles.
Mobile passively sensed data captured from smartphones constitute an excellent alternative to profile patients' biorhythm.
arXiv Detail & Related papers (2022-11-08T17:29:40Z) - Late Prompt Tuning: A Late Prompt Could Be Better Than Many Prompts [97.20933523766182]
Prompt tuning is a parameter-efficient tuning (PETuning) method for utilizing pre-trained models (PTMs)
We present Late Prompt Tuning () that inserts a late prompt into an intermediate layer of the PTM instead of the input layer or all layers.
We show that, can achieve competitive performance to full model tuning and other PETuning methods under both full-data and few-shot scenarios.
arXiv Detail & Related papers (2022-10-20T14:23:52Z) - Personalised recommendations of sleep behaviour with neural networks
using sleep diaries captured in Sleepio [11.243440695021567]
In collaboration with Big Health, we have analysed data from a random sample of 401,174 sleep diaries.
We have built a neural network to model sleep behaviour and sleep quality of each individual in a personalised manner.
We show that the neural network can be used to produce personalised recommendations of what sleep habits users should follow to maximise sleep quality.
arXiv Detail & Related papers (2022-07-29T18:29:05Z) - DLTTA: Dynamic Learning Rate for Test-time Adaptation on Cross-domain
Medical Images [56.72015587067494]
We propose a novel dynamic learning rate adjustment method for test-time adaptation, called DLTTA.
Our method achieves effective and fast test-time adaptation with consistent performance improvement over current state-of-the-art test-time adaptation methods.
arXiv Detail & Related papers (2022-05-27T02:34:32Z) - MSED: a multi-modal sleep event detection model for clinical sleep
analysis [62.997667081978825]
We designed a single deep neural network architecture to jointly detect sleep events in a polysomnogram.
The performance of the model was quantified by F1, precision, and recall scores, and by correlating index values to clinical values.
arXiv Detail & Related papers (2021-01-07T13:08:44Z) - Automatic detection of microsleep episodes with deep learning [55.41644538483948]
Brief fragments of sleep shorter than 15 s are defined as microsleep episodes (MSEs)
maintenance of wakefulness test (MWT) is often used in a clinical setting to assess vigilance.
MSEs are mostly not considered in the absence of established scoring criteria defining MSEs.
We aimed for automatic detection of MSEs with machine learning based on raw EEG and EOG data as input.
arXiv Detail & Related papers (2020-09-07T11:38:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.