論文の概要: CrysAtom: Distributed Representation of Atoms for Crystal Property Prediction
- arxiv url: http://arxiv.org/abs/2409.04737v1
- Date: Sat, 7 Sep 2024 06:58:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 21:01:36.870373
- Title: CrysAtom: Distributed Representation of Atoms for Crystal Property Prediction
- Title(参考訳): CrysAtom: 結晶特性予測のための原子の分散表現
- Authors: Shrimon Mukherjee, Madhusudan Ghosh, Partha Basuchowdhuri,
- Abstract要約: 物質科学の文献では、結晶性物質がトポロジカルな構造を示すことはよく知られている。
本稿では,原子の密度ベクトル表現を生成するために,無相関結晶データを用いた教師なしフレームワーク,CrysAtomを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Application of artificial intelligence (AI) has been ubiquitous in the growth of research in the areas of basic sciences. Frequent use of machine learning (ML) and deep learning (DL) based methodologies by researchers has resulted in significant advancements in the last decade. These techniques led to notable performance enhancements in different tasks such as protein structure prediction, drug-target binding affinity prediction, and molecular property prediction. In material science literature, it is well-known that crystalline materials exhibit topological structures. Such topological structures may be represented as graphs and utilization of graph neural network (GNN) based approaches could help encoding them into an augmented representation space. Primarily, such frameworks adopt supervised learning techniques targeted towards downstream property prediction tasks on the basis of electronic properties (formation energy, bandgap, total energy, etc.) and crystalline structures. Generally, such type of frameworks rely highly on the handcrafted atom feature representations along with the structural representations. In this paper, we propose an unsupervised framework namely, CrysAtom, using untagged crystal data to generate dense vector representation of atoms, which can be utilized in existing GNN-based property predictor models to accurately predict important properties of crystals. Empirical results show that our dense representation embeds chemical properties of atoms and enhance the performance of the baseline property predictor models significantly.
- Abstract(参考訳): 人工知能(AI)の応用は、基礎科学の分野における研究の進展において、至るところで行われている。
研究者による機械学習(ML)とディープラーニング(DL)ベースの方法論の頻繁な利用は、過去10年間で大きな進歩をもたらした。
これらの技術はタンパク質構造予測、薬物-標的結合親和性予測、分子特性予測などの様々なタスクにおいて顕著な性能向上をもたらした。
物質科学の文献では、結晶性物質がトポロジカルな構造を示すことはよく知られている。
このようなトポロジ構造はグラフとして表現され、グラフニューラルネットワーク(GNN)に基づくアプローチは、それらを拡張表現空間にエンコードするのに役立ちます。
主に、電子的特性(形状エネルギー、バンドギャップ、総エネルギーなど)と結晶構造に基づく下流特性予測タスクを対象とする教師あり学習手法を採用する。
一般にこの種のフレームワークは、構造表現とともに手作りの原子の特徴表現に強く依存している。
本稿では,非教師なしのフレームワークであるCrysAtomを提案し,非教師付き結晶データを用いて原子の密度ベクトル表現を生成し,既存のGNN特性予測モデルを用いて結晶の重要な特性を正確に予測する。
実験結果から, 原子の化学特性を包含し, ベースライン特性予測モデルの性能を著しく向上させることが示唆された。
関連論文リスト
- Material Property Prediction with Element Attribute Knowledge Graphs and Multimodal Representation Learning [8.523289773617503]
要素特性知識グラフを構築し、埋め込みモデルを用いて、要素属性を知識グラフ内にエンコードする。
マルチモーダル融合フレームワークであるESNetは、要素特性特徴と結晶構造特徴を統合し、ジョイントマルチモーダル表現を生成する。
これは結晶材料の性能を予測するためのより包括的な視点を提供する。
論文 参考訳(メタデータ) (2024-11-13T08:07:21Z) - Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
SMILESをベースとしたアンダーリネム分子アンダーリネム言語アンダーリネムモデルを提案し,特定の分子原子に対応するSMILESサブシーケンスをランダムにマスキングする。
この技術は、モデルに分子構造や特性をよりよく推測させ、予測能力を高めることを目的としている。
論文 参考訳(メタデータ) (2024-11-03T01:56:15Z) - Crystalformer: Infinitely Connected Attention for Periodic Structure Encoding [10.170537065646323]
結晶構造から材料の物性を予測することは、材料科学の基本的な問題である。
結晶構造が無限に繰り返し、原子の周期的な配列であり、完全に連結された注意が無限に連結された注意をもたらすことを示す。
本稿では, 結晶構造に対する簡単なトランスフォーマーベースエンコーダアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-03-18T11:37:42Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
我々は任意の結晶構造(ユニマット)を表現できる統一された結晶表現を開発する。
UniMatはより大型で複雑な化学系から高忠実度結晶構造を生成することができる。
材料の生成モデルを評価するための追加指標を提案する。
論文 参考訳(メタデータ) (2023-10-18T15:49:39Z) - DeepCrysTet: A Deep Learning Approach Using Tetrahedral Mesh for
Predicting Properties of Crystalline Materials [0.0]
材料特性を予測するための新しい深層学習手法であるDeepCrysTetを提案する。
DeepCrysTetは、Delaunay四面体化によって生成される3次元四面体メッシュとして表される結晶構造を用いる。
実験により、DeepCrysTetは既存のGNNモデルよりも結晶構造の分類や弾性特性の予測における最先端性能に優れていた。
論文 参考訳(メタデータ) (2023-09-07T05:23:52Z) - Atomic and Subgraph-aware Bilateral Aggregation for Molecular
Representation Learning [57.670845619155195]
我々は、原子とサブグラフを意識したバイラテラルアグリゲーション(ASBA)と呼ばれる分子表現学習の新しいモデルを導入する。
ASBAは、両方の種類の情報を統合することで、以前の原子単位とサブグラフ単位のモデルの限界に対処する。
本手法は,分子特性予測のための表現をより包括的に学習する方法を提供する。
論文 参考訳(メタデータ) (2023-05-22T00:56:00Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
グラフニューラルネットワーク(GNN)は、分子グラフ上で直接動作する新しい機械学習手法である。
GNNは、エンドツーエンドでプロパティを学習できるため、情報記述子の必要性を回避することができる。
本稿では、分子特性予測のための2つの例を通して、GNNの基礎を説明し、GNNの応用を実証する。
論文 参考訳(メタデータ) (2022-07-25T11:30:44Z) - Orbital Graph Convolutional Neural Network for Material Property
Prediction [0.0]
本稿では,結晶グラフ畳み込みニューラルネットワークフレームワークであるOrbital Graph Convolutional Neural Network (OGCNN)を提案する。
OGCNNには、材料特性を堅牢な方法で学習する原子軌道相互作用機能が含まれている。
本研究では, このモデルの性能について, 様々な特性を予測するために, 広範囲の結晶材料データを用いて検討した。
論文 参考訳(メタデータ) (2020-08-14T15:22:22Z) - Graph Neural Network for Hamiltonian-Based Material Property Prediction [56.94118357003096]
無機材料のバンドギャップを予測できるいくつかの異なるグラフ畳み込みネットワークを提示し、比較する。
モデルは、それぞれの軌道自体の情報と相互の相互作用の2つの異なる特徴を組み込むように開発されている。
その結果,クロスバリデーションにより予測精度が期待できることがわかった。
論文 参考訳(メタデータ) (2020-05-27T13:32:10Z) - Multi-View Graph Neural Networks for Molecular Property Prediction [67.54644592806876]
マルチビューグラフニューラルネットワーク(MV-GNN)を提案する。
MV-GNNでは,学習過程を安定させるために,自己注意型読み出しコンポーネントと不一致損失を導入する。
我々は、相互依存型メッセージパッシング方式を提案することにより、MV-GNNの表現力をさらに強化する。
論文 参考訳(メタデータ) (2020-05-17T04:46:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。